
Memory tagging in LLVM
and Android

Evgenii Stepanov, Kostya Serebryany, Peter
Collingbourne, Mitch Phillips, Vitaly Buka

Google
LLVM Developer Meeting, Oct. 2020

Agenda

● C(++) memory safety primer
● ARMv9 Memory Tagging Extension
● Implementation Details & Future Work

○ Heap Tagging
○ Stack Tagging

■ Stack Safety Analysis optimizations
○ Globals Tagging

● Expected rollout in Android

C++ Memory Safety

More than 50% of High severity bugs in Android are memory corruption.

Not only security: debugging memory corruption bugs is hard.
AddressSanitizer (ASan and HWASan) helps, but:

● Requires recompilation.
● Slow.
● Can be bypassed (not a security mitigation).

Key: Memory Safety Not Memory Safety

What is the Memory Tagging Extension?

● Optional extension in ARMv9, announced Aug 2018.
● AArch64 only, introduces 2 types of tags:

○ Logical Address Tag - bits 56..59 of the virtual address.
○ Allocation Tag - 4 bits for every 16 bytes of memory, stored separately.

● Load / Store instructions raise an exception if tags differ.
● New instructions to manipulate tags.
● Two modes:

○ Synchronous - process dies immediately with SEGV_MTESERR.
■ hoping for < 20% slowdown (*)

○ Asynchronous - process dies with SEGV_MTEAERR at the nearest context switch.
■ hoping for < 5% slowdown (*)
■ Does not provide fault PC or data address.

* All performance numbers are estimates.

How to use it?

● Protect heap
○ Randomly tag pointer + memory on allocation
○ Randomly tag memory on deallocation
○ Catches use-after-free, heap-buffer-overflow, double-free with 93% probability

● Protect stack
○ Randomly tag local variables when entering function or scope.
○ Tag local variables to tag(SP) when leaving function or scope.
○ Catches use-after-return, use-after-scope, stack-buffer-overflow with 93% probability

● Protect globals
○ Randomly tag global variables at load time
○ Apply tags to GOT pointers
○ Apply pointer tag when taking address of a local, non-GOT symbol
○ Catches global-buffer-overflow with 93% probability.

Heap tagging example

-32:-17 -16:-1 0:15 16:31 32:47 47:63

char *p = new char[20]; // 0xa0000xxxxxxxxxx

-32:-17 -16:-1 0:15 16:31 32:47 47:63

delete[] p; // 0xa0000xxxxxxxxxx

p[0] = …; // CRASH

p[32] = …; // CRASH

Heap tagging

Implemented in Scudo (default system allocator in Android 11).

Bump minimum alignment to 16.

Malloc from mmap: choose a random tag, apply to the pointer and memory.

Free: choose a random tag, apply to memory.

Malloc (memory reuse): load tag from memory, apply to the pointer.

Special cases: memory released to OS loses tag data; size change (within one
size class) requires memory tag fixup.

https://github.com/llvm/llvm-project/tree/master/compiler-rt/lib/scudo/standalone
https://source.android.com/devices/tech/debug/scudo

Heap Tagging: implementation details

Zero-tagged chunk header and optional right redzone.

Never reuse the same tag on free.

Spatial vs temporal protection trade-off: odd-even tags in adjacent chunks.

 (+) 100% detection of overflows of up to the entire allocation size

 (-) 87% detection of use-after-free (down from 93%).

Heap tagging: large allocations

Large allocations that are not used immediately, or used sparsely, are expensive
to tag up front. Two options:

● Do not tag. Surround with guard pages and never reuse VA (infinite
quarantine).

● Use a copy-on-write reference page with a non-zero tag
(https://lwn.net/Articles/828828)

https://lwn.net/Articles/828828

Heap tagging: crash reporting

Synchronous mode faults provide PC, data address and register contents. This
can be used to implement a lightweight AddressSanitizer-like tool.

A fixed-size ring buffer to store recent alloc/dealloc stack traces. FP-based
unwinding.

__scudo_malloc_set_track_allocation_stacks()

__scudo_get_error_info()

● Provides up to 3 "culprit" alloc/dealloc pairs with the matching address & tag.

Stack tagging
void f() {
 int x = 42;
 use(&x);
}

str x30, [sp, #-16]!

mov w8, #42
add x0, sp, #12
str w8, [sp, #12]
bl use

ldr x30, [sp], #16
ret

sub sp, sp, #32
str x30, [sp, #16]
irg x0, sp
mov w8, #42
stgp x8, xzr, [x0]

bl use
stg sp, [sp], #16
ldr x30, [sp], #16
ret

clang -fsanitize=memtag -march=armv8+memtag

Stack tagging: base pointer

Assigning an independently random tag to each variable requires an extra live
register per variable. This does not scale.

A tagged base pointer allows addressing variables with (addr offset, tag offset).

void f() {
 int a, b, c;
 use(&a);
 use(&b);
 use(&c);
}

add x0, sp, #12
bl use
add x0, sp, #8
bl use
add x0, sp, #4
bl use

irg x19, sp

addg x0, x19, #32, #2
bl use
addg x0, x19, #16, #1
bl use
mov x0, x19
bl use

Tagged stack layout

spillssp

untagged localssp

taggedtbp+1

untagged localssp

taggedtbp+2

taggedtbp

unallocated stack space

previous framesvarious

sp

Stack
grows
downSP

TBP

FP

Stack
unwinding

Stack tagging: optimizations

● Load/Store of [SP+#imm] are unchecked by hardware => no need to
materialize a tagged address.

● ST2G sets memory tags 32 bytes at a time => group allocas that leave scope
simultaneously, rewrite STG + STG to ST2G.

● Set tag and data simultaneously:

struct A {
 long a, b, c, d;
};
long f() {
 A a{0, 0, 42,(long)&a};
 use(&a);
 return a.b;
}

irg x0, sp
mov w8, #42
stzg x0, [x0]
stgp x8, x0, [x0, #16]
bl use
ldr x0, [sp, #8]
st2g sp, [sp], #32

Stack Safety Analysis

Many stack allocations, even address-taken, are trivially safe and do not need
protection.

StackSafetyAnalysis finds (min, max) range of offsets that provably covers all
memory access of an alloca.

● Conservative: returns full-set if alloca escapes or may be used outside its
lifetime.

● Interprocedural, with Thin LTO support.
● Context-insensitive.

Stack Safety: IPO

void write4(char *p) {
 memset(p, 0, 4);
}

void write8(char *p) {
 write4(p);
 write4(p + 4);
}

char func() {
 char x[8];
 write8(x);
 return x[2];
}

 write4(char* p)
 p: [0, 4)

write8(char* p)
 p: [0, 0)
 write4(p + [0, 5))

Stack Safety: IPO

void write4(char *p) {
 memset(p, 0, 4);
}

void write8(char *p) {
 write4(p);
 write4(p + 4);
}

char func() {
 char x[8];
 write8(x);
 return x[2];
}

 write4(char* p)
 p: [0, 4)

write8(char* p)
 p: [0, 8)
 write4(p + [0, 5))

Stack Safety: local analysis

void write4(char *p) {
 memset(p, 0, 4);
}

void write8(char *p) {
 write4(p);
 write4(p + 4);
}

char func() {
 char x[8];
 write8(x);
 return x[2];
}

write8(char* p)
 p: [0, 8)

func()
 x: [2, 3)
 write8(x + [0, 1))

func()
 x: [0, 8)
 write8(x + [0, 1))

Stack Safety: local analysis

void write4(char *p) {
 memset(p, 0, 4);
}

void write8(char *p) {
 write4(p);
 write4(p + 4);
}

char func() {
 char x[8];
 write8(x);
 return x[2];
}

write8(char* p)
 p: [0, 8)

Stack Safety

Runs until fixed point.

Unbounded recursion? Relax offset ranges to full-set after a number of steps.

Using Chromium as a benchmark:

● 25% allocas proven safe in separate compilation
● 60% allocas proven safe with LTO

Globals Tagging

● Dynamic symbols (int f; extern int f;)
○ Mark dynamic symbol table with st_other.STO_TAGGED
○ Teach the loader to read entire symbol table at startup and assign memory tags.

● Local symbols (static int g; or -fvisibility=hidden)
○ Create a segment containing { &global, sizeof(global } pairs for each global. Place this table's

address in the .dynamic section under a new tag DT_MTEGLOBTAB.
○ Teach the loader to read this table and assign a random memory tag to each global.
○ Address-taken sequences (&g) insert the tag via `ldg`.

● All globals:
○ Realign to granule size (16 bytes), resize to multiple of granule size (e.g. 40B -> 48B).
○ Ensure non-executable segments are mapped MAP_ANONYMOUS and PROT_MTE (file-based

mappings aren't necessarily backed by tag-capable memory)
○ Ban data folding (except where contents and size are same, no tail merging)

Globals Tagging (Relocations)

● GLOB_DAT, ABS64 need to insert memory tag into relocated value (via `ldg`).
○ dlsym() needs to do the same thing.

● RELATIVE relocations need to append memory tag, but...

static int array[] = { 1, 2, 3, 4 };
// array_end must have the same tag as array[]. array_end is out of
// bounds w.r.t. array, and may point to a completely different global.
int *array_end = &array[4];

● Introduce RELATIVE_TAGGED
○ Place (*r_offset) stores where the tag should be derived from
○ Addend (r_addend) contains the untagged value to be relocated.
○ XOR the addend and the tag to get the tagged value, and store that in the place.
○ Zero addend means tag is derived from the place, and can be RELR-style compressed.

Android

Experimental implementation available in AOSP(*) now.

● Async heap tagging in the system apps on by default.
● User apps can opt-in via manifest.
● An API to enable Sync mode and allocator debugging features.
● Stack + globals tagging requires incompatible code instrumentation.

○ Can be shipped in non-updatable platform binaries only.
○ Can be used for local debugging.
○ In the distant future, a new application ABI will include hardware MTE support.

(*) https://cs.android.com/android/platform/superproject/+/master:device/generic/goldfish/fvpbase/README.md

Thank you for listening!

Questions?

