Memory tagging in LLVM
and Android

Evgenii Stepanov, Kostya Serebryany, Peter
Collingbourne, Mitch Phillips, Vitaly Buka
Google
LLVM Developer Meeting, Oct. 2020



Agenda

e C(++) memory safety primer
e ARMvV9 Memory Tagging Extension

e Implementation Details & Future Work
o Heap Tagging
o Stack Tagging
m Stack Safety Analysis optimizations
o Globals Tagging

e Expected rollout in Android



C++ Memory Safety

More than 50% of High severity bugs in Android are memory corruption.

Not only security: debugging memory corruption bugs is hard.
AddressSanitizer (ASan and HWASan) helps, but:

e Requires recompilation.
e Slow.
e Can be bypassed (not a security mitigation).



All Project Zero bugs (Jul '18) Project Zero bugs in Apple products (Jul 18) Android CVE's May '17-'18



What is the Memory Tagging Extension?

Optional extension in ARMv9, announced Aug 2018.

e AArch64 only, introduces 2 types of tags:
o Logical Address Tag - bits 56..59 of the virtual address.
o Allocation Tag - 4 bits for every 16 bytes of memory, stored separately.
Load / Store instructions raise an exception if tags differ.
e New instructions to manipulate tags.

Two modes:
o  Synchronous - process dies immediately with SEGV_MTESERR.
m hoping for < 20% slowdown (*)
o Asynchronous - process dies with SEGV_MTEAERR at the nearest context switch.
m hoping for < 5% slowdown (*)
m Does not provide fault PC or data address.

* All performance numbers are estimates.



How to use it?

e Protect heap
o Randomly tag pointer + memory on allocation
o Randomly tag memory on deallocation
o Catches use-after-free, heap-buffer-overflow, double-free with 93% probability

e Protect stack
o Randomly tag local variables when entering function or scope.
o Tag local variables to tag(SP) when leaving function or scope.
o Catches use-after-return, use-after-scope, stack-buffer-overflow with 93% probability

e Protect globals

Randomly tag global variables at load time

Apply tags to GOT pointers

Apply pointer tag when taking address of a local, non-GOT symbol
Catches global-buffer-overflow with 93% probability.

(@)

o O O



Heap tagging example

char *p = new char[20]; // 0xa0000XXXXXXXXXX

‘-32:-17‘ -16:-1 ‘ 0:15 ‘ 16:31 ‘ 32:47 ‘ 47:63 ‘
-

0[32] = ...: /| CRASH

delete[] p; // 0xa0000XXXXXXXXXX

>
o[0] = ...: // CRASH




Heap tagging

Implemented in Scudo (default system allocator in Android 11).

Bump minimum alignment to 16.

Malloc from mmap: choose a random tag, apply to the pointer and memory.
Free: choose a random tag, apply to memory.

Malloc (memory reuse): load tag from memory, apply to the pointer.

Special cases: memory released to OS loses tag data; size change (within one
size class) requires memory tag fixup.


https://github.com/llvm/llvm-project/tree/master/compiler-rt/lib/scudo/standalone
https://source.android.com/devices/tech/debug/scudo

Heap Tagging: implementation details

=i

Zero-tagged chunk header and optional right redzone.

Never reuse the same tag on free.
Spatial vs temporal protection trade-off: odd- tags in adjacent chunks.
(+) 100% detection of overflows of up to the entire allocation size

(-) 87% detection of use-after-free (down from 93%).



Heap tagging: large allocations

Large allocations that are not used immediately, or used sparsely, are expensive
to tag up front. Two options:

e Do not tag. Surround with guard pages and never reuse VA (infinite
quarantine).

e Use a copy-on-write reference page with a non-zero tag
(https://lwn.net/Articles/828828)



https://lwn.net/Articles/828828

Heap tagging: crash reporting
Synchronous mode faults provide PC, data address and register contents. This
can be used to implement a lightweight AddressSanitizer-like tool.

A fixed-size ring buffer to store recent alloc/dealloc stack traces. FP-based
unwinding.

__scudo _malloc set track allocation stacks()

__scudo_get_error_info()

e Provides up to 3 "culprit" alloc/dealloc pairs with the matching address & tag.



Stack tagging

void f() {
int x = 42;
use(&x);

}

str

mov
add
str
bl

1dr
ret

x30, [sp, #-16]!

w8, #42

X0, sp, #12
w8, [sp, #12]
use

x30, [sp], #16

sub
str

mov

bl

1dr
ret

sp, sp, #32
x30, [sp, #16]

w8, #42

use

x30, [sp], #16

clang -fsanitize=memtag -march=armv8+memtag




Stack tagging: base pointer

Assigning an independently random tag to each variable requires an extra live
register per variable. This does not scale.

A tagged base pointer allows addressing variables with (addr offset, tag offset).

void f() {
int a, b, c;
use(&a); add x@, sp, #12
use(&b); bl use bl use
use(&c); add x@, sp, #8
} bl use bl use
add X0, sp, #4
bl use bl use




Tagged stack layout

various previous frames
sp spills
sp untagged locals

sp untagged locals
tbp+2 tagged

tbp tagged

sp unallocated stack space

T— &

TBP

Stack
unwinding

Stack
grows
down



Stack tagging: optimizations

e Load/Store of [SP+#imm] are unchecked by hardware => no need to
materialize a tagged address.

o ST2G sets memory tags 32 bytes at a time => group allocas that leave scope
simultaneously, rewrite STG + STG to ST2G.

e Settag and data simultaneously:

struct A {
long a, b, c, d; mov w8, #42
}s
long f() {
A a{oe, 0, 42,(long)&a}; bl use
use(&a); ldr  x0@, [sp, #8]
return a.b;
}




Stack Safety Analysis

Many stack allocations, even address-taken, are trivially safe and do not need
protection.

StackSafetyAnalysis finds (min, max) range of offsets that provably covers all
memory access of an alloca.

e Conservative: returns full-set if alloca escapes or may be used outside its
lifetime.

e Interprocedural, with Thin LTO support.

e Context-insensitive.



Stack Safety: IPO

void write4(char *p) {
memset(p, 0, 4);

}

void write8(char *p) {
write4(p);
writed(p + 4);

}

char func() {
char x[8];
write8(x);
return x[2];

}

write4(char* p)
p: [0, 4)

write8(char* p)

p: [0, 9)
writed(p + [0, 5))




Stack Safety: IPO

void write4(char *p) {
memset(p, 0, 4);

}

void write8(char *p) {
write4(p);
writed(p + 4);

}

char func() {
char x[8];
write8(x);
return x[2];

}

write4(char* p)
p: [0, 4)

write8(char* p)
p:
writed(p + [0, 5))




Stack Safety: local analysis

void write4(char *p) {
memset(p, 0, 4);

}

void write8(char *p) { )
write8(char* p)

writed(p);
writed(p + 4); p: [0, 8)
}
char func() { func()
char x[8]; x: [2, 3)
write8(x); write8(x + [0, 1))

return x[2];

}




Stack Safety: local analysis

void write4(char *p) {
memset(p, 0, 4);

}

void write8(char *p) { )
write8(char* p)

writed(p);
writed(p + 4); p: [0, 8)
}
char func() { func()
char x[8]; X:
write8(x); write8(x + [0, 1))

return x[2];

}




Stack Safety

Runs until fixed point.
Unbounded recursion? Relax offset ranges to full-set after a number of steps.
Using Chromium as a benchmark:

e 25% allocas proven safe in separate compilation
e 60% allocas proven safe with LTO



Globals Tagging

e Dynamic symbols (int f; extern int f;)
o Mark dynamic symbol table with st_other.STO_TAGGED
o Teach the loader to read entire symbol table at startup and assign memory tags.
e Local symbols (static int g; or -fvisibility=hidden)
o Create a segment containing { &global, sizeof(global } pairs for each global. Place this table's
address in the .dynamic section under a new tag DT_MTEGLOBTAB.
o Teach the loader to read this table and assign a random memory tag to each global.
o Address-taken sequences (&) insert the tag via 'Idg".

e All globals:
o Realign to granule size (16 bytes), resize to multiple of granule size (e.g. 40B -> 48B).
o Ensure non-executable segments are mapped MAP_ANONYMOUS and PROT_MTE (file-based
mappings aren't necessarily backed by tag-capable memory)
o Ban data folding (except where contents and size are same, no tail merging)



Globals Tagging (Relocations)

e GLOB_DAT, ABS64 need to insert memory tag into relocated value (via "1dg’).
o dlsym() needs to do the same thing.

e RELATIVE relocations need to append memory tag, but...

static int array[] = {1, 2, 3, 4 };

int *array_end = &array[4];

e Introduce RELATIVE_TAGGED

Place (*r_offset) stores where the tag should be derived from

Addend (r_addend) contains the untagged value to be relocated.

XOR the addend and the tag to get the tagged value, and store that in the place.

Zero addend means tag is derived from the place, and can be RELR-style compressed.

O O O O



Android

Experimental implementation available in AOSP(*) now.

Async heap tagging in the system apps on by default.
User apps can opt-in via manifest.
An API to enable Sync mode and allocator debugging features.

Stack + globals tagging requires incompatible code instrumentation.
o Can be shipped in non-updatable platform binaries only.
o Can be used for local debugging.
o Inthe distant future, a new application ABI will include hardware MTE support.

(*) https://cs.android.com/android/platform/superproject/+/master:device/generic/goldfish/fvpbase/README.md



Thank you for listening!

Questions?



