
... Samsung R&D Institute, Russia. 1.

.

Summary-based inter-unit analysis
for Clang Static Analyzer

Aleksei Sidorin

2016-11-01

... Samsung R&D Institute, Russia. 2

.

Clang Static Analyzer

▶ Source-based analysis
of high-level programming languages
(C, C++, Objective-C)

▶ Simple and powerful Checker API

▶ Context-sensitive interprocedural analysis
with inlining

▶ This talk is devoted to enhancement of IPA

... Samsung R&D Institute, Russia. 3

.

Symbolic execution with CSA

int c;

void func(FILE *f, int a, int b) {
if (a < 5) {
c = 2;
open(f);
if (b > 10)
close(f);

} else {
if (b > 2) {
c = 0;
close(f);

} else {
c = 1;

}
}

}

... Samsung R&D Institute, Russia. 4

.

Analysis with inlining

Callee’s exploded graph

... Samsung R&D Institute, Russia. 5

.

Summary-based analysis

▶ Don’t reanalyze every statement in callee function every time

▶ Instead, generate only output nodes based on previous analysis of callee function

▶ Restore effects of function execution using final states of its ExplodedGraph

▶ Remember the nodes in the callee graph where bug may occur but we cannot say it
definitely

▶ Check these nodes again while applying a summary with an updated ProgramState

▶ Can be enabled with setting of -analyzer-config to ipa=summary

... Samsung R&D Institute, Russia. 6

.

Exploded graph with “summary” nodes

f()

f()

f()

f()Summary
apply

Summary
apply

... Samsung R&D Institute, Russia. 7

.

Collecting summary

▶ First, we introduced a special callback evalSummaryPopulate

▶ Then, we started extracting the information directly from the state in the final node

▶ Some additional entries in the ProgramState for deferred checks may be still required

▶ We need to remember the conditions check is performed with

... Samsung R&D Institute, Russia. 8

.

Applying summary

For each state of function summary final node:
1. Actualize all symbolic values, regions and symbols

▶ We replace the symbolic values kept in summary (with their naming in the callee context) with
their corresponding values in the caller context

2. Determine if the branch is feasible
▶ If all the input ranges of summary branch values have non-empty intersections with ranges of

these values in caller, the branch is feasible
▶ This intersection of ranges becomes a new range of this value in result branch

3. Invalidate regions that were invalidated in the summary branch

4. Actualize the return value of the function and bind it as the value of call expression

5. Actualize checker-related data

... Samsung R&D Institute, Russia. 9

.

Applying checker summary

▶ Checkers are responsible for their own summary

▶ A special callback is used in the implementation

▶ Checkers can update their state to consider changes occurred during function call

▶ Checkers can perform deferred check if it is not clear in callee context if defect exists or not

▶ Checkers may split states while applying their summary, as in usual analysis

▶ Many check kinds may be performed that way

... Samsung R&D Institute, Russia. 10

.

Applying checker summary — example

Source code
with double close
void closeFile(FILE *f) {

fclose(f);
}

void doubleClose() {
FILE *cf = fopen("1.txt", "r");
closeFile(cf);
closeFile(cf);

}

How checker works
1. Analyze closeFile() out of caller context

1.1 Cannot say if it is the second close
1.2 Remember the event node in a separate ProgramState trait
1.3 Mark f as closed

2. Apply the summary for the first time
2.1 There is a check planned in summary
2.2 Actualization: f →cf
2.3 cf is opened — no actions are required
2.4 Mark cf as closed

3. Apply the summary for the second time
3.1 There is a check planned in summary
3.2 Actualization: f →cf
3.3 cf was closed twice! Warn here.

... Samsung R&D Institute, Russia. 11

.

Actualization

▶ We need to know the relation between symbolic values in the caller context and in the
callee context

▶ So, we translate symbolic values from the callee context to the caller context recursively

▶ All operations on summary applications are done with actualized values

▶ One symbolic value may contain many references to others

▶ One of the most complicated parts of summary apply code

... Samsung R&D Institute, Russia. 12

.

Actualization sample

void foo(char *x) {
if (x[2] == 'a') {}

}

void bar(char *y) {
foo(y);
foo("aaa");

}

x[2]

Region of 'x'
parameter

Region of 'x'
argument

High level stack
arguments space Stack arguments

space of a given
call

UnknownSpaceRegion

Stores a pointer to... Stores a pointer to...

Symbolic
region of 'x'

Symbolic
region of 'y' y[2]

StringRegion
of "aaa"

'a'

GlobalSpaceRegion

x[2]

Region of 'x'
parameter

High-level function
stack arguments

space

UnknownSpaceRegion

Stores a pointer to...

Symbolic
region of 'x'

Stores a pointer to...

Stack arguments
space of a given
call

Region of 'x'
parameter

... Samsung R&D Institute, Russia. 13

.

Building interprocedural report
▶ In summary apply node, we store a pointer to the corresponding final node of callee graph
▶ For deferred checks, we do the same with the deferred check node

Start
flag - unknown

f - unknown

flag - false
f - unknown

flag - true
f - closed

Deferred check

EndEnd

Start
f - unknown

Call potential_close_file()

End

f - closed

double_close()
close_file()

Start
f - unknown

Call close_file()

End

potential_double_close()

13

12

14

8

9

1

4 5

... Samsung R&D Institute, Russia. 14

.

Main results

▶ Faster analysis
▶ In the worst case, all the operations with Store and GDM are repeated while applying a summary
▶ But we don’t model Environment—we don’t need it
▶ removeDeadBindings() is the hottest spot in the whole analyzer code

▶ More bugs can be found for the same time.

... Samsung R&D Institute, Russia. 15

.

Known issues I

1. Memory optimizations required
▶ While using inlining, ExplodedGraphs are being deleted after analysis of each function is

completed
▶ In summary (with current approach), we need to keep the ExplodedGraphs of all the callee

functions because of deferred checks
▶ This leads to much greater memory consumption

2. Checkers should support summary in this implementation
▶ Customization of all path-sensitive checkers is… painful
▶ Checker writers should know how summary works and be able to use it
▶ May lead to mistakes in checker implementation
▶ Possible solutions are Smart GDM/Ghost regions or just some ready-for-use templates

... Samsung R&D Institute, Russia. 16

.

Known issues II

3. Limiting analysis time
▶ In inlining mode, max-nodes setting may be used
▶ In summary, every SummaryPostApply node corresponds to the whole path in the callee function,

but the build time of this node is much greater
▶ Currently, we use heuristic of max-nodes/4

4. Non-evident warnings may appear
▶ In summary, we assume that equivalence classes appear directly while entering the call
▶ However, some checkers may be not ready for this
▶ Example: DivisionByZeroChecker may report not only div-after-check, but also check-after-div

5. Virtual calls whose object type is unknown are not supported
▶ And indirect calls with initially unknown callee as well

... Samsung R&D Institute, Russia. 17

.

Inter-unit analysis prototype

Why do we need it?
▶ To make CSA reason about functions in different translation units
▶ To decrease a number of functions evaluated conservatively
▶ To decrease the amount of FPs caused by lack of information about function

How it works?
▶ Three-stage analysis

▶ Build phase: collects information about functions in TUs
▶ Pre-analysis: build global call graph and perform topological sorting
▶ Analysis: launch clang to analyze all the TUs in topological order

Is it usable for other purposes, not CSA-related?
▶ An open question :)

... Samsung R&D Institute, Russia. 18

.

XTU: build phase

A number of infrastructure tools: some written in Python, some in C++ (clang-based)

Usage: xtu-build.py $build_cmd

▶ Intercept compiler calls
▶ Currently, we use our strace-based solution
▶ New interceptor with compilation database building should also be fine

▶ Dump the information about functions in TU
▶ Map function definitions to TUs they located in
▶ Dump local call graphs
▶ Support multi-arch builds

▶ Dump ASTs of all translation units

... Samsung R&D Institute, Russia. 19

.

XTU: pre-analysis

▶ Read data generated in the build stage

▶ Resolve dependencies between functions in different TUs

▶ Build final mapping between functions and TUs

▶ Build global call graph of the analyzed project

▶ Sort global call graph in topological order
▶ We sort TUs, not functions

... Samsung R&D Institute, Russia. 20

.

XTU: analysis stage

▶ Launch clang for TUs in topological order — in the process pool

▶ Analyze functions as usually

▶ If we meet function call with no definition, try to find it in an another TU

▶ If definition was found:
▶ Load corresponding ASTUnit
▶ Find the function definition
▶ Try to import it using ASTImporter
▶ If import was successful, analyze call as usually

▶ Generate multi-file report

... Samsung R&D Institute, Russia. 21

.

XTU— toy sample
% OUT_DIR=.xtu xtu-build.py g++ -c callee.cpp caller.cpp
% xtu-analyze.py --output-dir . --xtu-dir .xtu --enable-checker=core.DivideZero
% cat .xtu/external-map.txt
_Z3divi@x86_64 .xtu/ast/long-path/xtu-sample/callee.cpp.ast

report.html sub-report.html

5 ← Division by zero

Bug Summary

File: /media/partition/tmp/xtu-sample/callee.cpp
Location: line 3, column 13

Description: Division by zero

Annotated Source Code

1
2 int div(int divisor) {
3 return 100/divisor;

4 }

1 Assuming 'num' is equal to 0 →

2 ← Taking true branch →

3 ← Passing the value 0 via 1st parameter 'divisor' →

4 ← Calling 'div' →

1 int div(int);
2
3 void caller(int num) {
4 if (num == 0) {}

5 div(num);

6 }

... Samsung R&D Institute, Russia. 22

.

Pros and cons
Good points:

▶ Transparent analysis — no need in checker support
▶ All AST information is available without loss

Possible issues:
▶ Questionable scalability

▶ Enough for analyzer but may be not enough for other purposes

▶ Possible name conflicts
▶ Usage of the mangled name for function search is possibly not the best idea
▶ We may need to model a linker to avoid name conflicts in large projects

▶ High disk usage
▶ AST dumps consume too much disk space

▶ May interact with AST-based checkers with changing AST on-the-fly
▶ Coverage pattern changes too much

... Samsung R&D Institute, Russia. 23

.

Number of nodes processed per time
Checkers: ConstModified and IntegerOverflow
Code: AOSP 4.2.1

Non-XTU analysis XTU mode analysis

... Samsung R&D Institute, Russia. 24

.

Unique warnings per time

Non-XTU analysis XTU mode analysis

... Samsung R&D Institute, Russia. 25

.

Acknowledgements

▶ Artem Dergachev — for his great input into current design and implementation of
summary-based analysis

▶ Karthik Bhat— for the idea of multi-phase analysis

▶ Iuliia Trofimovich— for the implementation of multi-html report

▶ Anna Zaks, Devin Coughlin, Ted Kremenek— for the help in understanding of different
analyzer features and internals

▶ Gábor Horváth— for his investigation of our XTU implementation

... Samsung R&D Institute, Russia. 26

.

Thank you!

▶ Questions?
▶ Remarks?
▶ Advice/ideas?

... Samsung R&D Institute, Russia. 27

.

Applying checker summary — example

Source code
with possible integer overflow

char add(int a, int b) {
return a + b;

}

void overflow(int ca, int cb) {
if (ca == INT_MAX) {
if (cb == INT_MAX) {}
add(ca, cb);

}
}

How checker works
1. Analyze add() out of caller context

1.1 Cannot say if overflow happens or not
1.2 Remember the event node in a separate ProgramState trait

2. Apply the summary for the first execution branch
2.1 There is a check planned in summary
2.2 Actualization: a →ca, b →cb
2.3 ca == INT_MAX but cb != INT_MAX
2.4 Cannot say if overflow happens or not
2.5 Remember the event node in a separate ProgramState trait

3. Apply the summary for the second execution branch
3.1 There is a check planned in summary
3.2 Actualization: a →ca, b →cb
3.3 ca == INT_MAX and cb == INT_MAX
3.4 It’s an overflow! Warn here.

