
Extending LoopVectorizer:
OpenMP4.5 SIMD and Outer Loop Auto-Vectorization

Vectorizer Team (presenter: Hideki Saito)

Intel Corporation

LLVM Developer Conference 2016/11/03

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

Legal Disclaimers
• Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as

SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those

factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated

purchases, including the performance of that product when combined with other products.

• Relative performance is calculated by assigning a baseline value of 1.0 to one benchmark result, and then dividing the actual benchmark result for the baseline

platform into each of the specific benchmark results of each of the other platforms, and assigning them a relative performance number that correlates with the

performance improvements reported.

• Intel does not control or audit the design or implementation of third party benchmarks or Web sites referenced in this document. Intel encourages all of its

customers to visit the referenced Web sites or others where similar performance benchmarks are reported and confirm whether the referenced benchmarks

are accurate and reflect performance of systems available for purchase.

• Intel® Hyper-Threading Technology Available on select Intel® Xeon® processors. Requires an Intel® HT Technology-enabled system. Consult your PC

manufacturer. Performance will vary depending on the specific hardware and software used. For more information including details on which processors

support HT Technology, visit http://www.intel.com/info/hyperthreading.

• Intel® Turbo Boost Technology requires a Platform with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance

varies depending on hardware, software and overall system configuration. Check with your platform manufacturer on whether your system delivers Intel Turbo

Boost Technology. For more information, see http://www.intel.com/technology/turboboost

• Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor series, not across different

processor sequences. See http://www.intel.com/products/processor_number for details. Intel products are not intended for use in medical, life saving, life

sustaining, critical control or safety systems, or in nuclear facility applications. All dates and products specified are for planning purposes only and are subject

to change without notice

• Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel representative to obtain Intel’s current

plan of record product roadmaps. Product plans, dates, and specifications are preliminary and subject to change without notice

• Copyright © 2014 Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon and Xeon logo , Xeon Phi and Xeon Phi logo are trademarks or registered

trademarks of Intel Corporation or its subsidiaries in the United States and other countries. All dates and products specified are for planning purposes only and

are subject to change without notice.

• *Other names and brands may be claimed as the property of others.

2

http://www.intel.com/info/hyperthreading
http://www.intel.com/technology/turboboost
http://www.intel.com/products/processor_number

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,
and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

1. We plan to teach LLVM to vectorize Outer-loops
a. Explicitly via OpenMP4.5 and also automatically.
b. Use it for vectorizing Functions
c. Design also for Loop+SLP vectorization, Outer+Inner Loop vectorization,

and more

2. Do so by extending LLVM’s existing Innermost Loop Vectorizer
a. Leveraging past and ongoing efforts as well as future maintenance
b. Introducing Vectorization Plan to model (multiple) potential candidates

3. This long-term challenge just started; Collaboration welcome!

4

Key Takeaways

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

• Scalable Vectorization (Day 1, 11:15-noon) by Graham Hunter and
Amara Emerson

• Vectorizer’s output for SVE arch
• Predication
• Gather/scatter

• Representing composite SIMD operations in LLVM-IR (Day 1, 5-
5:45pm, BoF) by Elena Demikhovsky

• Vectorizer’s output

• RV: A Unified Region Vectorizer for LLVM (Day2, 3:45-4:45pm,
Poster) by Simon Moll

• Vectorizer as a building block

5

Related Talks

Should be complementary to each other
and can co-exist/collaborate with this work.

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

• Goal Setting for Multi-Year Project

• Rationale

• Compare and Contrast

• Execution Plan

• Call for Participation

6

Objectives/Agenda

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice
7

Background and Goal Setting

We’d like to build up incrementally,
but towards an ambitious goal.

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

Today’s LLVM Vectorizers

8

• LoopVectorize for innermost
loop vectorization

• SLPVectorize for “unrolled”
(or similar) code

• LoadStoreVectorizer for GPU
memrefs

• BBVectorize (replaced by
SLPVectorize)

• Various (non-)proprietary
OpenCL implementations

• RV/WfV projects (U-
Saarland)

• …

We fully understand how this happens,
but this isn’t necessarily ideal.

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice
9

Vectorization Yesterday

for (k=0; k<N; k++)
A[k] = B[k] + C[k];

K=0

Ld C[1]

Ld B[1]

Add

St A[1]

K=1

Ld C[2]

Ld B[2]

Add

St A[2]

K=0..1

Ld C[1]

Ld B[1]

Add

St A[1]

Ld C[2]

Ld B[2]

Add

St A[2]

Scalar code Vector code

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice
10

Vectorization Yesterday

for (k=0; k<N; k++)
A[k] = B[k] + C[k];

K=0

Ld C[1]

Ld B[1]

Add

St A[1]

K=1

Ld C[2]

Ld B[2]

Add

St A[2]

K=0..1

Ld C[1]

Ld B[1]

Add

St A[1]

Ld C[2]

Ld B[2]

Add

St A[2]

Scalar code Vector code

Vector code generation was straightforward.
Emphasis on analysis, disambiguation,

IF-conversion, vector math lib, etc.

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice
11

Need to Vectorize More w/ Longer Vector

0

2

4

6

8

10

4-way vector 8-way vector 16-way vector

80% vector

90% vector

95% vector

Projected Speedup for Perfect Scaling

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice
12

Vectorization Today

#pragma omp simd reduction(+:….)

for(p=0; p<N; p++) {
// Blue work
if(…) {

// Green work
} else {

// Red work
}
while(…) {

// Gold work
// Purple work

}
y = foo (x);
Pink work

}

p=0

2

Are all
lanes done?

p=0..1

Function call

x1

y1

Vector Function call

x1, x2

y1, y2

p=1

3

Function call

x2

y2

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice
13

Vectorization Today

#pragma omp simd reduction(+:….)

for(p=0; p<N; p++) {
// Blue work
if(…) {

// Green work
} else {

// Red work
}
while(…) {

// Gold work
// Purple work

}
y = foo (x);
Pink work

}

p=0

2

Are all
lanes done?

p=0..1

Function call

x1

y1

Vector Function call

x1, x2

y1, y2

p=1

3

Function call

x2

y2

Two fundamental problems
 Data divergence
 Control divergence

Vector code generation has become a more difficult problem
Increasing need for user guided explicit vectorization

Explicit vectorization maps threaded execution to simd hardware

[See WPMVP2016-Keynote-xtian-.pdf https://sites.google.com/site/wpmvp2016/talk for more info]

https://sites.google.com/site/wpmvp2016/talk

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

• Nested vectorization (iterations from inner- and outer-loops plus SLP
forming a single vector) [Zhou and Xue, CGO16, “mixed SIMD” talked
about mixing intra-/inter-iteration parallelism.]

• More Idiomatic Patterns (Compress, Expand, Histogram [Demikhovsky,
LLVM-US’13, AVX512], Last Value from Conditional Assignment)

• Any other ways to guide SIMD intrinsic programmers to high level
language programming

• We even talk about how to support C++EH inside vector context
• FP speculation safety is already part of today’s state-of-the-art. 

14

Vector Programming Tomorrow

Programmer Demands:
Vectorization with all standard programming constructs inside.
Performance on-par with (or close enough to) SIMD intrinsic code.
Straightforward enough coding to maintain.

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

• One vectorizer for loops, SLP (including load/store coalescing),
function, and multi-level (or nested) vectorization

• Demand for vectorizer is getting complex. Can’t afford to reinvent/maintain
multiple similar things.

• Evaluate trade-offs between vectorizing one way versus another (e.g., inner-
versus outer- loop vectorization) – using an abstract Vectorization Plan

• Extensible for further extensions of standards (OpenMP, OpenCL,
C++, …) + various (non-)proprietary needs

• Pick and choose (i.e., customize) “features” to control compile
time, code size, and target needs.

• Vectorizer for JIT (e.g. OpenCL) has different requirements from static
compilation

• Vector-heavy targets needs higher functionality to achieve more
%vector_coverage and better scalability 15

Ambitious Goal

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

OpenMP4.5 as a good milestone

16

• Innermost loop vectorization

• Outer loop vectorization

• Function Vectorization

• Similarity to “kernel vec” in
OpenCL, WfV, etc.

• No SLP Vectorization yet

• Actively extended to meet
programmer needs

• Multi-vendor + multi-
platform to compare

• One vectorizer can
accommodate both OpenMP
SIMD and auto-vec

• Try designing the solution
w/ further extensions in
mind

• Outer loop auto-vec, Nested
Vectorization, and more

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

• Inner- versus Outer-Vectorization

• Function- versus Loop-Vectorization

• Auto- versus Explicit-Vectorization

17

Compare and Contrast

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

Innermost loop versus Outer-loop

18

// vectorize here

for (i=ilb; i<iub; i++){
…..

}

• Non-loop control flow can
be IF-converted/masked.

• Inner loop control flow
needs massaging and then
IF-convert+mask

// vectorize here

for(i=ilb; i<iub; i++){

…..

for (j=jlb(i); j<jub(i); j++){

while(cond(i,j)) { … }

if (…) break;

}

}

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

More about outer-loop vec

19

// vectorize here

for(i=ilb; i<iub; i++){

…..

for (j=jlb(i); j<jub(i); j++){

while(cond(i,j)) { … }

if (…) break;

}

}

julb = hmin(jlb(i));
juub = hmax(jub(i));
cont1 = T;
for (j=julb; j<juub; j++){

if (jlb(i) <= j && j < jub(i) && cont1) {
cont2 = cond(i,j);
while(hor(cont2)) {

if (cont2) {
…
cont2 = cond(i,j);

}
}
if (…) cont1=F;
if (!hor(cont1)) break;

}
}

Loop until last element
finish looping

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

Loop versus Function

20

// vectorize here

for(i=ilb; i<iub; i++){

…..

for (j=jlb(i); j<jub(i); j++){

while(cond(i,j)) { … }

if (…) break;

}

}

// vectorize here

float foo(float x, int i, int *p) {

…..

for (j=jlb(i); j<jub(i); j++){

while(cond(i,j)) { … }

if (…) break;

}

}

Essentially the same if
explicit loop is created.

Essentially the same if
loop body is extracted

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

Loop versus Function (cont)

21

Loop Vectorization
via Function Vectorizer

• Outline loop body into a
function

• Vectorize

• Inline it back

High overhead even when we
know a loop needs to be
vectorized. Even more so for auto-
vec.

Function Vectorization
via Loop Vectorizer

• Create loop around function
body + fix call interface

• Vectorize

Low overhead esp. when we
know a function needs to be
vectorized.

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

• Typical auto-vectorization is ---- vectorize when planets align.
• One bad thing  do not vectorize

• Operating principle for Explicit Vectorization is the converse.
• Vectorize unless a good justification why scalar is better exists: enclosed in

ordered simd block, function call w/o vector function mapping, best
emulation sequence is scalar code, etc.

• Serialization w/o good justification is considered lack of robustness.

• Both should be implemented in the same framework.
• Explicit vectorization helps auto-vectorizer more robust
• Auto-vectorization helps explicit vectorizer work better w/o optional tuning

clauses.

22

Auto- versus Explicit- Vectoriztion

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

• Explicit vectorization
• could use more compile time and code size, esp. in static compilation (user

opted-in)
• Can proactively transform IR (instructed to vectorize)

• Auto vectorization
• Shouldn’t spend a lot of compile time just to decide whether xform should

kick-in or not (subject to stricter time/size ROI than opt-in)
• Shouldn’t start to modify IR until estimated gain is known.

23

Auto- versus Explicit- Vectoriztion (cont)

This is where OpenCL vectorizer (that we know)
and WfV aren’t nice about.

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

that can support
• Innermost loop auto- and explcit-vectorization
• Outer loop auto- and explcit-vectorization
• Function vectorization
• SLP-awareness

24

It’s Feasible to Build One Loop Vectorizer

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice
25

Execution Plan

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

• Clang Front End to parse directives and create IR
• Please attend Xinmin Tian’s talk at the 3rd LLVM-HPC Workshop at SC’16 (Nov

14th) https://llvm-hpc3-workshop.github.io/

• Convert Function Vectorization to Loop-Vectorization
• https://reviews.llvm.org/D22792

• Outer Loop Vectorization Support
• RFC: http://lists.llvm.org/pipermail/llvm-dev/2016-September/105057.html

• Vectorization Plan

• Robust handling of uniform/linear/private/reduction, etc.
• Make sure upstream transformation won’t lose them or leave them

inconsistent
• POD (plain old data) and non-POD types
• User-defined reduction is a big challenge

26

Major Milestones towards OpenMP4.5

https://llvm-hpc3-workshop.github.io/
https://reviews.llvm.org/D22792
http://lists.llvm.org/pipermail/llvm-dev/2016-September/105057.html

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

1. Basic Block abstraction, Instruction abstraction
 Need to massage inner loop control flow before deciding to vectorize

2. Uniformilty/Linearity/Privateness analysis
 A loop-invariant value is uniform; Converse holds for innermost loops, but not for outer

loops, in general.

3. Actual massaging of inner loop control flow

4. Robust predication/masking that works on massaged inner loop

5. Facility to compare inner loop vectorization cost model and outer loop
vectorization cost model

6. Abstract Vectorization Plan is a good place to store them

7. Non-POD (arrays, structs) privatization is must-have in explicit
vectorization.

27

Major Building Blocks Needed
for Outer-Loop Vectorization

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

Our plan is a gradual, incremental development to best leverage the
efforts already invested, and actively ongoing, in the existing
innermost Loop Vectorizer.

1. Introduce Vectorization Plan (NFC patch).
VPlan models current decisions and transformations.

2. Let LoopVectorize retain uniform control flow.
Less masking/blending can lead to better perf.

3. Vectorize Outer Loop if Inner Loop has uniform control flow.

4. Vectorize Outer Loop with Inner Loop control flow massaging.

28

Steps to Apply to LoopVectorize

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

• 1st patch designed to be an NFC

• Migrate from the current flow of
Legal  Cost  Transform

where Cost tries to predict what Transform will do, and both are
confined to a single fixed candidate assumed to be branch-free,
to a flow of

Legal  Plan(s)  Cost  Transform
where a Plan provides both Cost and Transform for the resulting
vector loop

• Evaluate compile-time and memory overheads, early pruning and
other potential optimizations and clean-ups

29

Step 1: Introduce the Vectorization Plan

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

• Current innermost Loop Vectorizer if-converts all branches inside
vectorized loop, inherently assuming resulting vector loop will be
branch-free

• When vectorizing an outer-loop, resulting vector loop will
necessarily contain branches – those that control internal loops

• This step teaches the innermost Loop Vectorizer to handle
uniform branches inside its vector loop

• Evaluate the impact of the optimization, enabled under a flag

30

Step 2: Retain Uniform Control-Flow

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

• Extend the innermost Loop Vectorizer to handle outer loops, by
transforming nested divergent loops into uniform loops; selection
of best candidate loop to vectorize facilitated by Vectorization
Plan

• At-first driven by directives; later guided by cost model

• At-first handle simple cases, e.g., being vectorized by GCC;
later extended to support , e.g., OpenMP 4.x patterns

31

Steps 3 and 4: Extend LV to handle
Outer Loops

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

• Presented multi-year vectorizer enhancement goals towards
Outer Loop Vectorization and beyond

• Jaxutaposed various vectorization approaches

• Incremental development on existing LoopVectorize to
leverage past and ongoing efforts

• One vectorizer for OpenMP4.5 SIMD functionality and outer
loop auto-vectorization (and more)

32

Summary

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

Participate in the discussion, design, development, code review,
experiments, bug fixing, etc.

Project has a lot of work for many people to collaborate. We’d like to
have coordinated development to minimize/eliminate redundancy
and maximize productivity.

Contact us if you are interested in working on this.

33

Call To Action

Copyright © 2016, Intel Corporation. All rights reserved.Optimization Notice

1. We plan to teach LLVM to vectorize Outer-loops
a. Explicitly via OpenMP4.5 and also automatically.
b. Use it for vectorizing Functions
c. Design also for Loop+SLP vectorization, Outer+Inner Loop vectorization,

and more

2. Do so by extending LLVM’s existing Innermost Loop Vectorizer
a. Leveraging past and ongoing efforts as well as future maintenance
b. Introducing Vectorization Plan to model (multiple) potential candidates

3. This long-term challenge just started; Collaboration welcome!

34

Key Takeaways

