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Optimization Notice

Optimization Notice
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1. We plan to teach LLVM to vectorize Outer-loops
a. Explicitly via OpenMP4.5 and also automatically.
b. Use it for vectorizing Functions
c. Design also for Loop+SLP vectorization, Outer+Inner Loop vectorization,

and more

2. Do so by extending LLVM’s existing Innermost Loop Vectorizer
a. Leveraging past and ongoing efforts as well as future maintenance
b. Introducing Vectorization Plan to model (multiple) potential candidates

3. This long-term challenge just started; Collaboration welcome!
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Key Takeaways
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• Scalable Vectorization (Day 1, 11:15-noon) by Graham Hunter and 
Amara Emerson

• Vectorizer’s output for SVE arch
• Predication
• Gather/scatter

• Representing composite SIMD operations in LLVM-IR (Day 1, 5-
5:45pm, BoF) by Elena Demikhovsky

• Vectorizer’s output

• RV: A Unified Region Vectorizer for LLVM (Day2, 3:45-4:45pm, 
Poster) by Simon Moll

• Vectorizer as a building block

5

Related Talks

Should be complementary to each other 
and can co-exist/collaborate with this work.
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• Goal Setting for Multi-Year Project

• Rationale

• Compare and Contrast

• Execution Plan

• Call for Participation

6

Objectives/Agenda



Copyright ©  2016, Intel Corporation. All rights reserved.Optimization Notice
7

Background and Goal Setting

We’d like to build up incrementally,
but towards an ambitious goal.
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Today’s LLVM Vectorizers

8

• LoopVectorize for innermost 
loop vectorization

• SLPVectorize for “unrolled” 
(or similar) code

• LoadStoreVectorizer for GPU 
memrefs

• BBVectorize (replaced by 
SLPVectorize)

• Various (non-)proprietary 
OpenCL implementations

• RV/WfV projects (U-
Saarland)

• …

We fully understand how this happens, 
but this isn’t necessarily ideal.
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Vectorization Yesterday

for (k=0; k<N; k++)
A[k] = B[k] + C[k];

K=0

Ld C[1]

Ld B[1]

Add

St A[1]

K=1

Ld C[2]

Ld B[2]

Add

St A[2]

K=0..1

Ld C[1]

Ld B[1]

Add

St A[1]

Ld C[2]

Ld B[2]

Add

St A[2]

Scalar code Vector code
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Vectorization Yesterday

for (k=0; k<N; k++)
A[k] = B[k] + C[k];

K=0

Ld C[1]

Ld B[1]

Add

St A[1]

K=1

Ld C[2]

Ld B[2]

Add

St A[2]

K=0..1

Ld C[1]

Ld B[1]

Add

St A[1]

Ld C[2]

Ld B[2]

Add

St A[2]

Scalar code Vector code

Vector code generation was straightforward.
Emphasis on analysis, disambiguation,

IF-conversion, vector math lib, etc. 
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Need to Vectorize More w/ Longer Vector

0

2

4

6

8

10

4-way vector 8-way vector 16-way vector

80% vector

90% vector

95% vector

Projected Speedup for Perfect Scaling
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Vectorization Today

#pragma omp simd reduction(+:….)

for(p=0; p<N; p++) {
// Blue work
if(…) {

// Green work
} else {

// Red work
}
while(…) {

// Gold work
// Purple work

}
y = foo (x);
Pink work

}

p=0

2

Are all
lanes done?

p=0..1

Function call

x1

y1

Vector Function call

x1, x2

y1, y2

p=1

3

Function call

x2

y2
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Vectorization Today

#pragma omp simd reduction(+:….)

for(p=0; p<N; p++) {
// Blue work
if(…) {

// Green work
} else {

// Red work
}
while(…) {

// Gold work
// Purple work

}
y = foo (x);
Pink work

}

p=0

2

Are all
lanes done?

p=0..1

Function call

x1

y1

Vector Function call

x1, x2

y1, y2

p=1

3

Function call

x2

y2

Two fundamental problems
 Data divergence
 Control divergence 

Vector code generation has become a more difficult problem
Increasing need for user guided explicit vectorization

Explicit vectorization maps threaded execution to simd hardware

[See WPMVP2016-Keynote-xtian-.pdf https://sites.google.com/site/wpmvp2016/talk for more info]

https://sites.google.com/site/wpmvp2016/talk
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• Nested vectorization (iterations from inner- and outer-loops plus SLP 
forming a single vector)  [Zhou and Xue, CGO16, “mixed SIMD” talked 
about mixing intra-/inter-iteration parallelism.]

• More Idiomatic Patterns (Compress, Expand, Histogram [Demikhovsky, 
LLVM-US’13, AVX512], Last Value from Conditional Assignment)

• Any other ways to guide SIMD intrinsic programmers to high level 
language programming

• We even talk about how to support C++EH inside vector context
• FP speculation safety is already part of today’s state-of-the-art. 

14

Vector Programming Tomorrow

Programmer Demands:
Vectorization with all standard programming constructs inside.
Performance on-par with (or close enough to) SIMD intrinsic code.
Straightforward enough coding to maintain. 



Copyright ©  2016, Intel Corporation. All rights reserved.Optimization Notice

• One vectorizer for loops, SLP (including load/store coalescing), 
function, and multi-level (or nested) vectorization

• Demand for vectorizer is getting complex. Can’t afford to reinvent/maintain 
multiple similar things.

• Evaluate trade-offs between vectorizing one way versus another (e.g., inner-
versus outer- loop vectorization) – using an abstract Vectorization Plan

• Extensible for further extensions of standards (OpenMP, OpenCL, 
C++, …) + various (non-)proprietary needs

• Pick and choose (i.e., customize) “features” to control compile 
time, code size, and target needs.

• Vectorizer for JIT (e.g. OpenCL) has different requirements from static 
compilation

• Vector-heavy targets needs higher functionality to achieve more 
%vector_coverage and better scalability 15

Ambitious Goal
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OpenMP4.5 as a good milestone

16

• Innermost loop vectorization

• Outer loop vectorization

• Function Vectorization

• Similarity to “kernel vec” in 
OpenCL, WfV, etc.

• No SLP Vectorization yet

• Actively extended to meet 
programmer needs

• Multi-vendor + multi-
platform to compare

• One vectorizer can 
accommodate both OpenMP
SIMD and auto-vec

• Try designing the solution 
w/ further extensions in 
mind

• Outer loop auto-vec, Nested 
Vectorization, and more
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• Inner- versus Outer-Vectorization

• Function- versus Loop-Vectorization

• Auto- versus Explicit-Vectorization

17

Compare and Contrast
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Innermost loop versus Outer-loop

18

// vectorize here

for (i=ilb; i<iub; i++){
…..

}

• Non-loop control flow can 
be IF-converted/masked.

• Inner loop control flow 
needs massaging and then 
IF-convert+mask

// vectorize here

for( i=ilb; i<iub; i++){

…..

for (j=jlb(i); j<jub(i); j++){

while(cond(i,j)) { … }

if (…) break;

}

}
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More about outer-loop vec

19

// vectorize here

for( i=ilb; i<iub; i++){

…..

for (j=jlb(i); j<jub(i); j++){

while(cond(i,j)) { … }

if (…) break;

}

}

julb = hmin(jlb(i));
juub = hmax(jub(i));
cont1 = T;
for (j=julb; j<juub; j++){

if (jlb(i) <= j && j < jub(i) && cont1) {
cont2 = cond(i,j);
while(hor(cont2)) {

if (cont2) {
…
cont2 = cond(i,j);

}
}
if (…) cont1=F;
if (!hor(cont1)) break;

}
}

Loop until last element
finish looping
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Loop versus Function

20

// vectorize here

for( i=ilb; i<iub; i++){

…..

for (j=jlb(i); j<jub(i); j++){

while(cond(i,j)) { … }

if (…) break;

}

}

// vectorize here

float foo(float x, int i, int *p) {

…..

for (j=jlb(i); j<jub(i); j++){

while(cond(i,j)) { … }

if (…) break;

}

}

Essentially the same if
explicit loop is created.

Essentially the same if
loop body is extracted
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Loop versus Function (cont)

21

Loop Vectorization
via Function Vectorizer

• Outline loop body into a 
function

• Vectorize

• Inline it back

High overhead even when we 
know a loop needs to be 
vectorized. Even more so for auto-
vec.

Function Vectorization
via Loop Vectorizer

• Create loop around function 
body + fix call interface

• Vectorize

Low overhead esp. when we 
know a function needs to be 
vectorized.
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• Typical auto-vectorization is ---- vectorize when planets align.
• One bad thing  do not vectorize

• Operating principle for Explicit Vectorization is the converse.
• Vectorize unless a good justification why scalar is better exists: enclosed in 

ordered simd block, function call w/o vector function mapping, best 
emulation sequence is scalar code, etc.

• Serialization w/o good justification is considered lack of robustness.

• Both should be implemented in the same framework.
• Explicit vectorization helps auto-vectorizer more robust
• Auto-vectorization helps explicit vectorizer work better w/o optional tuning 

clauses.

22

Auto- versus Explicit- Vectoriztion
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• Explicit vectorization
• could use more compile time and code size, esp. in static compilation (user 

opted-in)
• Can proactively transform IR (instructed to vectorize)

• Auto vectorization
• Shouldn’t spend a lot of compile time just to decide whether xform should 

kick-in or not (subject to stricter time/size ROI than opt-in)
• Shouldn’t start to modify IR until estimated gain is known.

23

Auto- versus Explicit- Vectoriztion (cont)

This is where OpenCL vectorizer (that we know)
and WfV aren’t nice about.
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that can support
• Innermost loop auto- and explcit-vectorization
• Outer loop auto- and explcit-vectorization
• Function vectorization
• SLP-awareness

24

It’s Feasible to Build One Loop Vectorizer
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Execution Plan



Copyright ©  2016, Intel Corporation. All rights reserved.Optimization Notice

• Clang Front End to parse directives and create IR
• Please attend Xinmin Tian’s talk at the 3rd LLVM-HPC Workshop at SC’16 (Nov 

14th) https://llvm-hpc3-workshop.github.io/

• Convert Function Vectorization to Loop-Vectorization
• https://reviews.llvm.org/D22792

• Outer Loop Vectorization Support
• RFC: http://lists.llvm.org/pipermail/llvm-dev/2016-September/105057.html

• Vectorization Plan

• Robust handling of uniform/linear/private/reduction, etc.
• Make sure upstream transformation won’t lose them or leave them 

inconsistent
• POD (plain old data) and non-POD types
• User-defined reduction is a big challenge

26

Major Milestones towards OpenMP4.5

https://llvm-hpc3-workshop.github.io/
https://reviews.llvm.org/D22792
http://lists.llvm.org/pipermail/llvm-dev/2016-September/105057.html
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1. Basic Block abstraction, Instruction abstraction
 Need to massage inner loop control flow before deciding to vectorize

2. Uniformilty/Linearity/Privateness analysis
 A loop-invariant value is uniform; Converse holds for innermost loops, but not for outer 

loops, in general.

3. Actual massaging of inner loop control flow

4. Robust predication/masking that works on massaged inner loop

5. Facility to compare inner loop vectorization cost model and outer loop 
vectorization cost model

6. Abstract Vectorization Plan is a good place to store them

7. Non-POD (arrays, structs) privatization is must-have in explicit 
vectorization.

27

Major Building Blocks Needed
for Outer-Loop Vectorization



Copyright ©  2016, Intel Corporation. All rights reserved.Optimization Notice

Our plan is a gradual, incremental development to best leverage the 
efforts already invested, and actively ongoing, in the existing 
innermost Loop Vectorizer.

1. Introduce Vectorization Plan (NFC patch).
VPlan models current decisions and transformations.

2. Let LoopVectorize retain uniform control flow.
Less masking/blending can lead to better perf.

3. Vectorize Outer Loop if Inner Loop has uniform control flow.

4. Vectorize Outer Loop with Inner Loop control flow massaging.

28

Steps to Apply to LoopVectorize
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• 1st patch designed to be an NFC

• Migrate from the current flow of
Legal  Cost  Transform

where Cost tries to predict what Transform will do, and both are 
confined to a single fixed candidate assumed to be branch-free,
to a flow of

Legal  Plan(s)  Cost  Transform
where a Plan provides both Cost and Transform for the resulting 
vector loop

• Evaluate compile-time and memory overheads, early pruning and 
other potential optimizations and clean-ups

29

Step 1: Introduce the Vectorization Plan
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• Current innermost Loop Vectorizer if-converts all branches inside 
vectorized loop, inherently assuming resulting vector loop will be 
branch-free

• When vectorizing an outer-loop, resulting vector loop will 
necessarily contain branches – those that control internal loops

• This step teaches the innermost Loop Vectorizer to handle 
uniform branches inside its vector loop

• Evaluate the impact of the optimization, enabled under a flag

30

Step 2: Retain Uniform Control-Flow 
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• Extend the innermost Loop Vectorizer to handle outer loops, by 
transforming nested divergent loops into uniform loops; selection 
of best candidate loop to vectorize facilitated by Vectorization 
Plan

• At-first driven by directives; later guided by cost model

• At-first handle simple cases, e.g., being vectorized by GCC;
later extended to support , e.g., OpenMP 4.x patterns

31

Steps 3 and 4: Extend LV to handle
Outer Loops
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• Presented multi-year vectorizer enhancement goals towards 
Outer Loop Vectorization and beyond

• Jaxutaposed various vectorization approaches

• Incremental development on existing LoopVectorize to 
leverage past and ongoing efforts

• One vectorizer for OpenMP4.5 SIMD functionality and outer 
loop auto-vectorization (and more)

32

Summary
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Participate in the discussion, design, development, code review, 
experiments, bug fixing, etc.

Project has a lot of work for many people to collaborate. We’d like to 
have coordinated development to minimize/eliminate redundancy 
and maximize productivity.

Contact us if you are interested in working on this.

33

Call To Action
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1. We plan to teach LLVM to vectorize Outer-loops
a. Explicitly via OpenMP4.5 and also automatically.
b. Use it for vectorizing Functions
c. Design also for Loop+SLP vectorization, Outer+Inner Loop vectorization,

and more

2. Do so by extending LLVM’s existing Innermost Loop Vectorizer
a. Leveraging past and ongoing efforts as well as future maintenance
b. Introducing Vectorization Plan to model (multiple) potential candidates

3. This long-term challenge just started; Collaboration welcome!
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Key Takeaways




