
Leveraging Intermediate
Forms for Analysis

Andrew Reiter, Ayal Spitz and Jared Carlson

Veracode Research
Intrepid Pursuits

Analysis via
Formal Methods

What are Formal Methods?

Why should they be used?

Who should be using them? FM &
LLVM Community…

Our Approach to integrating FM into
LLVM…

What are Formal
Methods?

Formal Methods are a set of
techniques used to construct and/or
verify a mathematical model of a
system, in this case a software system…

Hoare Logic, 1969, formal set of
logical rules to reason about computer
programs.

The Basics Start in
*101

The idea of a particle is a model - in
reality there’s no such thing.

Many of the engineering approximations
we use in day to day constructions are
derived from more generalized physics;
Maxwell’s equations -> Ohm’s Law; F =
m*a (is only true for constant mass, and
is a simplification of the Hamiltonian).

Some Physics
Examples

E i dl = d
dtc

!∫ B i ds
s
∫ →V = iR

Electromagnetic equations leads to circuit analysis

H = pi
2

2mii
∑ + V (ri − rj)

i< j
∑

dpi
dt

= ∂H
∂ri
; dxi
dt

= ∂H
∂pi

;→ F = m ⋅a

Hamiltonian leads to every day usage (and the
common simplification) of Newton’s Law.

Formal Methods in
Engineering

in ME, EE, AE, etc, we don’t use the
term “Formal Methods”; instead we
have “Free Body Diagrams”, instead of
a verifier, we have CAD, FE Solvers, etc.

These tools all “model” the underlying
physics and engineering
approximations.

Pencil/Paper or
whiteboard

CAD

Numerical Simulation

3-D print or small
prototyping for scaled
tests

Build it!

Software ought to have more modeling uses. The tools were a bit lacking but
these days are actually quite good - see Kathleen Fischer (USENIX 2015)

Pencil/Paper or
whiteboard

Alloy

Coq

tests - logic/unit/
etc.

Deploy!

In Software…

In software a model is usually
thought of in terms of MVC (Model
View Controller) paradigms, where the
engineer is separating the components.

This isn’t a true “model” as the M is
written in code and actually
implemented.

Formal Methods
Fundamentally Software can be approached
via logic - the mathematical
underpinnings…

In physics we are usually concerned with
the states of time, position, velocity…

In software, we’re concerned with state
information, as defined by available types
to the program.

In other words, we’re generally replacing differential
equations (equations of motion, electromagnets,
differential geometry, etc.) with logical operations
such as joins, unions, disjunction, and so forth.
Replacing calculations with Calculational Logic (see R.
Blackhouse for text examples).

A few quick examples:

Disjunction… Basically an OR statement; but DNF is
fundamental in analysis for proving theorems (DNF,
each variable only appears once in every clause).

floor(x) can be defined for all float x, the answer
is an integer such that n <= x; this means n <=
floor(x); (float)n <=x; implying floor(x) <= x;
demanding that “floor” always rounds down.

Assignment: Given a pre and post conditions
for assignment it can be possible to calculate
an appropriate assignment statement.

Suppose s and n satisfy s=n^2 and we want to
maintain this while incrementing n (n++); pre
s=n^2; post s = (n+j)^2 and holds for all j (1,
…). Then s is incremented by 2*n + 1.

While this is fairly trivial these calculations
are much more reliable than an educated
guess, which is often implemented. How
often have you seen “Oh I just did…” and
then later on…

Formal Methods
Generally

In Software, foundational uses of logic
allow us to transfer code or pseudo code
into a form for modeling…

This could be “find” a model, a means a
prototyping via logic

Or this could be “checking” a model,
involving the construction of appropriate
tests, evaluation of code, etc.

FM Jargon 101
Invariants - true condition for duration of
the program.

Intervals

Abstract Domains, polyhedra..

Fixed Point Iteration - convergence

Linear constraints - defines boundaries/limits

and so on….

FM and LLVM

Samples of LLVM & FM: VeLLVM, IKOS,
SMACK, along with others.. So folks
have been and are continuing to
work here!

LLVM IR is not ideal for FM as a
standalone but it’s not meant to! :<)
But it’s a great starter..

Opportunities

Moving beyond IR, LLVM is modular
and has so many tools for development
that FM ought to move into this space.

Specific tools for FM space should be
developed and become part of the
community, especially as LLVM
continues to grow in the embedded
space.

ø Issues?
ø nodes; these represent a partial
disjunction over at least some variables.
For non-relational domains (think:
intervals) this is fine, but for relational
abstractions (think: polyhedra) which want
to describe properties over all program
variables this is “very challenging”

We haven’t seen anyone “daring” enough to
really take this on.

Instruction Sets?

Certain instructions can also
represent challenges, as complex
instructions are ideally regularized
(simplified).

As an example, a complex pointer
arithmetic operation (gep) is
replaced by pointer shifting (pshift).

IR Control Flow

Conditional branch instructions can
pose a problem where invariants
might cross over basic blocks
(propagation) for the branches.

Typically analysis would desire
abstract domains that are
independent as possible.

Who’s Doing What in
FM?

Formal Methods are increasingly used everywhere (but this
is still a minority).

Critical systems are the most common uses. NASA, NIST,
DARPA, other government uses for infrastructure and so on
in rapidly developing interesting technology and use cases.

Facebook uses Confer, attempting to bridge the gap of FM
and modern development life cycle.

In Industry this has been gaining favor for a while as well.
MSFT invested heavily in FM and greatly reduced the “blue
screen of death” via SMACK.

VeLLVM
VeLLVM (UPenn), created some
verifiable LLVM passes.

Formalized semantics of IR, for
example, the undef value and
intentional underspecification.

Extracted an interpreter from formal
semantics.

SeaHorn

Takes program and generates IR for
verification.

Inline code, seahorn_assert(…),
assume(…).

Only linear constraints, interval
domains…

IKOS
Developed @ NASA by the formal
methods group. NASA is very
concerned with reliability issues in
software

Inference Kernel, generic operations
for analysis provided.

Example has an LLVM front-end.

Other Intermediate
Forms: CIL

Attempts to stay close to C in a “clean”
representation.

High level representation, attempting to
retain the higher level information that is
often encapsulated in source.

Simplified branching, etc, are core concepts.

Obvious issue is if you’re doing something
outside of C…

Intermediate
Forms: BAP

If you saw the DARPA Grand Cyber
Challenge, BAP (Binary Analysis Platform)
was an essential component.

Carnegie Mellon’s entry (Mayhem) used BAP
for automated security analysis.

Uses an IL (Intermediate Language) but is
often lifted to SSA form (per LLVM) for
analysis passes, etc - BAP has LLVM bindings.

Intermediate
Forms: AR

AR (Abstract Representation) NASA
AR is our choice. Replaced ø nodes
are replaced with assignments,
pointer arithmetic is simplified, etc.

CFG based representation of the
program is essential for domain
construction.

Example

Ok, let’s do a “simple” example of
applying FM…

Lattice Boltzmann
Method

LBM is a gas dynamics method for solving
hydrodynamic equations.

Based on the Boltzmann distribution, it’s a rare
- time dependent - physical model.

Because of our emphasis on realizing models we
should mention that this very strong theoretical
physics model has some poor assumptions (only
binary collisions!), but it still very successful
(generally carefully constructed).

LBM Code =“simple”
 // compute density and velocity from the f's
void computeMacros(double* f, double* rho, double* ux, double* uy) {
 double upperLine = f[2] + f[5] + f[6];
 double mediumLine = f[0] + f[1] + f[3];
 double lowerLine = f[4] + f[7] + f[8];
 *rho = upperLine + mediumLine + lowerLine;
 *ux = (f[1] + f[5] + f[8] - (f[3] + f[6] + f[7]))/(*rho);
 *uy = (upperLine - lowerLine)/(*rho);
}

 // compute local equilibrium from rho and u
double computeEquilibrium(int iPop, double rho,
 double ux, double uy, double uSqr)
{
 double c_u = c[iPop][0]*ux + c[iPop][1]*uy;
 return rho * t[iPop] * (
 1. + 3.*c_u + 4.5*c_u*c_u - 1.5*uSqr
);
}

 // bgk collision term
void bgk(double* fPop, void* selfData) {
 double omega = *((double*)selfData);
 double rho, ux, uy;
 computeMacros(fPop, &rho, &ux, &uy);
 double uSqr = ux*ux+uy*uy;
 int iPop;
 for(iPop=0; iPop<9; ++iPop) {
 fPop[iPop] *= (1-omega);
 fPop[iPop] += omega * computeEquilibrium (
 iPop, rho, ux, uy, uSqr);
 }
}

In practice, we verify
via the Physics!

Conservation of mass, momentum, energy are
relatively simple checks to ensure the calculations are
correct.

f d!v∫ = ρ = fi
i
∑

!u ⋅ f ⋅d!v
c
∫ = ρ !u = ui

i
∑ fi

mass

momentum

Notice these give us good pre/post conditions as
discussed earlier. They look slightly different but
really aren’t that complicated.

Our pre ∑f and post ∑f are the check to verify
correct assignments.

In this we are taking graduate level physics, and
determining that simple checks for code quality
can be constructed using assignment conditions
at critical sections.

Alloy (Daniel Jackson @MIT, especially) makes
this excellent point - that FM doesn’t need to be
heavy, light-weight FM used well is a great choice!

This Brought us to
Alloy

Alloy is a first order (primarily) logic tool to
find a model.

Simple codes such as this embody complicated
ideas in the form of simple code that we’d like
to check under certain conditions (special cases).

Alloy is an MIT initiative for light-weight FM.
Nice, clear language that allows for a variety of
solvers to be used. Easy to use, distributed as a
JAR

Disadvantages

We want to interact with the actual
code! This isn’t possible with Alloy
as-is…

Model finding AND checking is the
goal…

Code…
So we started by importing a subset of the
Alloy grammar. Instead of Java, using C+
+ (mainly as we want to interface with C++
based tools).

Created an interface to Z3 for a SAT
solver (mirrored off of the very excellent
project - “Souper”).

So this starts to find models…

But, Alloy Allows
Exploration

Our hacking does NOT reproduce
one of the most essential features
of Alloy - the ability to interactively
find and explore models!

Large caveat but… sometimes you
can only do what you can do…

AST (snippet)

ExprField

Expr

ExprVarExprListExprConstant

Sig

Fact Hint

Analysis

LBM Alloy Model
sig Lattice { many Node }

sig Node {

rho: lone Float,

p: lone Float

 }

 ….

Annotations
 // compute density and velocity from the f's
__attribute__((annotate("calculation"))) void computeMacros(double* f, double* rho,
double* ux, double* uy) {
 double upperLine = f[2] + f[5] + f[6];
 double mediumLine = f[0] + f[1] + f[3];
 double lowerLine = f[4] + f[7] + f[8];
 *rho = upperLine + mediumLine + lowerLine;
 *ux = (f[1] + f[5] + f[8] - (f[3] + f[6] + f[7]))/(*rho);
 *uy = (upperLine - lowerLine)/(*rho);
}

 // compute local equilibrium from rho and u
double computeEquilibrium(int iPop, double rho,
 double ux, double uy, double uSqr)
{
 double c_u = c[iPop][0]*ux + c[iPop][1]*uy;
 return rho * t[iPop] * (
 1. + 3.*c_u + 4.5*c_u*c_u - 1.5*uSqr
);
}

 // bgk collision term
__attribute__((annotate("collision"))) void bgk(double* fPop, void* selfData) {
 double omega = *((double*)selfData);
 double rho, ux, uy;
 computeMacros(fPop, &rho, &ux, &uy);
 double uSqr = ux*ux+uy*uy;
 int iPop;
 for(iPop=0; iPop<9; ++iPop) {
 fPop[iPop] *= (1-omega);
 fPop[iPop] += omega * computeEquilibrium (
 iPop, rho, ux, uy, uSqr);
 }
}

Automated Pass
Analysis

Annotations are a nice “trick” to leverage to
automatically link to a pass.

Our first pass matches the IR Metadata to
Alloy-spec.

From there we generate AR using an
additional pass for model queries.

IR can be used for symbolic execution,
other means to verify a specific state.

Slicing & Dicing

Program

CFG

Break Apart Domains
based on CFG dependencies

Domain 1

Domain 2

Verification and
Analysis

LLVM Passes (perhaps a bit obvious, but
maybe wrong?) leveraging IKOS*

In LBM, the code (and CFG) is quite
simple. Extraction from IR to AR is
reasonably pleasant (so more to prove
later).

AR to IR (Transformation + Insertion)
allows for various forms of checking.

* We have a colleague investigating more advanced toolsets
(similar to IKOS - also from NASA; some of the same folks)

High Level

Z3
SAT Solver

Interfaces

Alloy
Ingestion

AR IR

CompileFM

Source

Checks

SMTLib2

Diff’s
Converting to/from constraints AR is non-
trivial. This example works nicely due to
its simplicity.

For non-trivial logical assumptions a
great deal more of work is required.

Once we can have the AR, because of its
resemblance to IR inconsistencies are a bit
easier.

Model Lang.
Summary

For now we’ve chosen to weakly (buggy)
support Alloy functions and commands.

Mainly this is due to resources but also
because we want to be able to inject
analysis directly to the AR processing,
(think inline), and that’s a more
original contribution.

Disadvantages
Our analysis run as passes and generally any
optimizations that are part of the compilation
chain are not verified as our approach tangentially.

We’re not analyzing everything, just critical code
sections.

If we fail, we currently don’t have a good
mechanism to inform for necessary changes - this
is BIG by the way… (Similar to clang’s ability to
suggest a solution, we need a similar ‘Diagnostics
Engine’ for FM we believe).

Results
We can diff the found model vs. the
resultant implementation.

Also can inject code for sym. execution of
the resultant implementation subject to
assumptions.

Moving beyond the simple, explaining
results isn’t all that easy… We need much
friendlier errors!

Conclusion
We used a modeling language (well, we hijacked one that we
like) to find a model.

Used this to enforce certain conditions, here, physics
conservation laws for special cases (i.e. no energy source BC).

Interact with the code, but leave the source minimally altered
(ideally). Trying to separate the higher and lower logical
ideas.

Transformation at Intermediate forms allow exchange of the
high/low level information for analysis. Ideally however the
Representation for FM is VERY easily translated from LLVM IR.

Wanted to tie this to the development toolchain…

Lot more work to
be done here

Growing field, an exciting field, especially for those
mathematically inclined.

Tools need to be integrated in our opinion.

LLVM is a good place to continue work. But while we’d
like to see LLVM incorporate more FM, FM should
likely fit the LLVM “style” (usability especially).

Lots of separate players - it was easy for us to talk to
folks at DARPA, harder to find the right person at NASA
for example. Different goals as well… (likely part of
the problem).

What We’re Up To…
Think about maybe another layer for translations?
SIL for Swift; maybe an IL to ease logic/FM
translations to and from IR?

Lots more work to evaluate backend tools…

Error messages, translating modeling logic to
code logic? Or maybe this is wrong and it should
be in the code?

Talk to FM folks and argue they NEED to work
with compiler and tools groups!

