Leveraging Intermediate
Forms for Analysis

Andrew Reiter, Ayal Spitz and Jared Carlsown

Veracode Research
Iv&repﬁd Pursuiks

Amatvsi;s Vi
Formal Mebhods
What are Formal Mebhods?
Why should they be used?

Who should be using them? M &
LLVM Community...

Cur Apprcm&k to tnteqrating FM into
LLVM...

What are Formal
Mebhods?

Formal Methods are a set of
techiniques used to construct and/or
verify a mathematical model of a

system, in this case a software system...

Hoare Loqgic, 1969, formal set of
logical rules to reason about computer
programs,

The Basics Stark U
*1071

o The idea of a particle is a model - in
reality theres no such thing,

o Many of the engineering approximations
we use i day to day constructions are
derived from more generalized physics;
Maxwell’s equations - Chm's Law; F =
naxa (is only true for constant mass, and
is o simplification of the Hamiltonian).

| Xamples

CJ‘DE-allzi Beds >V =IiIR
C dtS

Electromagnetic equations leads to circuit analysis

2
H=Y 2L IEV(};—rj)
] 2m i<j
dp, OH dx, OJH
dt Jr. dt Op.
Hamiltonian leads bo every dmv usage (and the
COMMON simpti{i«:a&om) of Newbton’s Law.

—>F=m-a

Formal Mebhods U
g eer E'Mg

o i ME, EE, AL, ebe, we dont use the
term “Formal Methods”; tnstead we
have “Free Body Diagrams”, instead of
a verifier, we have CAD, FE Solvers, ete.

o These btools all “mwodel” the uv\c{@.ﬂ.ﬁiv\g‘
Fskjsic:s and engineering
appraximo\&oms‘

o Pewncil/ ‘Pammi/ ‘?&F??.T‘ or
whi&ebow%k&ebmard

o CRR. & Alloy

o Numerical Simulabtion
@ L.cwq

o 3-D priu& or small : :
pro&aﬁﬁpﬂageﬁp Sedeaic/unit/

tesks ebc,

o RBuild it's "De.yi.ov!

Software ought to have more modeling uses. The tools were a bit lacking but

these days are actually quite good - see Kathleen Fischer (USENIX 2016)

¢igid

in Software...

o In software a model is usuauv
thought of in terms of MVC (Model
View Controller) paradigms, where the
engineer is separating the components.

o This isnt a brue “model” as Ehe M is
wriktben i code and aaﬁu&tbj

impt&memﬁed‘

Formal Mebhods

o Pumdamem&auv Software can be &Pproaak@.d
via logic - the mathematical
underpinnings...

o In physics we are usually concerned with
the states of time, position, velocity...

o In software, were concerned with state
information, as defined by available types
to the program,

o In other words, were generally replacing differential
equations (equations of motion, electromagnets,
differential geometry, ete.) with Llogical operations
such as joins, unions, disjunction, and so forth.
Replacing calculations with Calculational Logic (see R,
Blackhouse for text examples).

o A few quick examples:

o Disjunction... Basi«taitj an OR statement; butk DNF is
fundamental in anatjsis for proving theorems (DNF,
each variable only appears once in every clause).

o floor(x) camn be defined for all float x, the answer
s an integer such that n <= x; this means n <=
floor(x); (floabdn <=x; implying floor(x) <= x;
demanding that “floor” always rounds down.

o Assignment: Given a pre and post conditions
for assignment it can be possible to calculate
an appropriate assignment statement.

o Suppose s and so&&s»fj 5= and we want to
maintain this while incrementing n (n++); pre
s=n"2; post s = (W+j) 2 and holds for all j (1,
..). Then s is incremented bj R*¥ + 1,

o While this is ﬂfogi,ri.v trivial these calculations
are nmuch more reliable than an educated
guess, which is often implemented. How
often have you seen "0k I just did...” and
thew Later on...

Formal Mebhods
Gemer&i.i.:j

o In Software, foundational uses of logic
allow us to transfer code or pseudo code
into a form for modeling...

o This could be “find” a model, a means a
pro&o&vgams via logic

o Or this could be “checking” a model,
ivolving the construction of appropriate
tests, evaluation of code, ete,

<M Jarqon 101

Invariants - btrue condition for duration of
the program.

=i o aihaers,
Abskract Domains, Patvhedrom@
Fixed Point Iteration - convergence
Linear constrainks - defines boundaries/Limiks

and so oW....

M and LLVM

o Samples of LLVM & FM: VelLVM, IKOS,
SMACK, alonqg with obthers.. So folks
have been and are continuing to
work here!

o LLVM IR is not ideal for FM as a
standalone bub its notk meant to! :<)
But its a great starter.

OPPQrEumLEE;@.s

o Moving b@.vov\cl IR, LLVM is modular
and has so many tools for development
that FM ocught to move into this space.

o Specific tools for FM space should be
developed and become part of the
community, especially as LLVM
continues to qgrow in the embedded
space.

¢ Issues?

o ¢ nodes; these represen& a par&iat
disjunction over at least some variables.
For non-relational domains (Ehinle:
intervals) this is fine, but for relational
abstractions (think: polyhedra) which want
to describe properties over all program
variables this is “very challenging”

o We havent seen ahyone “daring” enough to
reattv Falee Ehis on.

Insktruction Seks?

o Certain instructions can also
represem& challenges, as &omgi&x
instructions are ideally reqularized

(stimplified).

o As al exam[zeie, a com[ﬁ't@x Fo&m&m
arithmetic operation (gep) is
replaced by pointer shifting (pshift).

IR Control Flow

Conditional branch inskructions can
pose a problem where invariants
might cross over basic blocks
(propagation) for the branches.

T:jpicattv amat:jsi,s would desire
abstract domains Ehak are
Emc&epemd@;mﬁ as possibte.

Who's Doing What i
M7

o Formal Methods are hcreasingly used everywhere (but this
ts still a mimori&v)‘

o Critical s:jsEams are bthe wost common uses. NASA, NIST,
DARPA, other qovernment uses for infrastructure and so on
n rapidly developing interesting technology and use cases.

o Faceboolk uses Confer, attempting to bridge the gap of FM
and modern development Life cycle.

o In Iv\dus&rj this has been qaining favor for a while as well.
MSET tnvested heavily in FM and greatly reduced the “blue
screen of deabh” via SMACK.

Vel LVM

o VelLVM (UPenn), created some
verifiable LLVM passes.

o Formalized semantics of IR, for
example, the undef value and
intentional underspecification.

o Extracted an interpreter from formal
semantics.

SeaHori

o Talkes program and generates IR ffor
verificakion,

o Inline code, seahorn_assert(...),
assumel(...).

o 0&\{3 Linear constraints, inkterval
domains...

IKOS

o ‘D@.vetoyed @ NASA bv the formal
methods group. NASA is very
concerned with reliability issues in
software

o Inference Kernel, generic operations
for analysis provided.

3 Exampté has an LLVM front-end.

Obther Inkermediate
Forms: CIL

A&Eemp&s ko sanj close ko C i a “clean”
represem&a&wm

High level represemEa%Eom, QEEQMPEEMS to
retain the higher level information that is
often encapsulated in source.

Simplified branching, ete, are core concepts.

Obvicus issue is bf vou’re doing something
outside of C...

Inkermediatbe
Forms: RATY

if Yyou saw the DARPA Grand Cﬁjber
Challenge, BAP (Binary Analysis Platform)
was al essential compomev\&.

Carnegie Mellons entry (Mavkem) used BAP
for automated security analysis,

Uses an IL (Intermediate Lanquage) but is
often Lifted to SSA form (per LLVM) for
analysis passes, etc - BAP has LLVM bindings.

Inkermediatbe
Forms: AR

AR (Abstract Representation) NASA
AR Ls our cholice, ertaced ¢ nodes
are repiaced with assigiments,
pointer arithmetic is simplified, ete.

CFG based representation of the
program s essential ffor domain
construction,

£ X O F?i.@.

o Ok, let’s do a “simple” example of
apptjis«g =M...

Lattice Rolkzmanin
Mebthod

o LBM is a 9as dynamics method for solving
hydrodynamic equations.

o Based own the Bolkzmann distribution, its a rare
- kime depemdem& = pkvsicat model.,

o Because of our emphasis on realizing models we
should mention that this very strong theoretical
physics model has some poor assumptions (ontj
binary collisions!), but it still very successful
(generally carefully constructed).

LBM Code :“S&MPL@.”

// compute density and velocity from the f's

fr2) + £[(5]1 + f£[(6];
=.£[07 + £[1] +5EEST;
= fr4] + £[(7] + £[8];
*rho = upperLine + mediumLine + lowerLine;
*ux = (f[1] + £[5] + £[8] - (£f[3] + f[6] + £[7]1))/(*rho);
*uy = (upperLine - lowerLine)/(*rho);

// compute local equilibrium from rho and u
computeEquilibrium

’ ')

c[iPop][0]*ux + c[iPop][l]*uy;
t[iPop] * (
+ 3% c u '+ 4.5%c UACREEEESERSS *uSqr

rho

— % |l
[]

)i

// bgk collision term

= *((*)selfData);
double
computeMacros (fPop, &rho, &ux, &uy);
= ux*uxtuy*uy;

(1Pop=0; iPop<9; ++iPop) {
fPop[iPop] *= (l-omega);
fPop[iPop] += omega * computeEquilibrium (
iPop, rho, ux, uy, uSqr);

1 pr&c&&e, we veriffv
via the Physics:

o Conservation of mass, momentum, energy are
reta&iveiv si,mgi.e checlkes ko ensure the calculakions are
correck.

| Fav = p =it mMass

li-f-di=pi=uf nmomentum

Notice these give us good pre/post conditions as
discussed earlier. They look slightly different but
really arent that complicated.,

Our pre ¥ and post ¥4 are the check to verbf:j
correct assighments.

In this we are taking graduate level physics, and
determining that simple checks for code quality
can be constructed using assigument conditions
ab critical sectiowns.

Ai.i.c;:rj (Daniel Jackson @CMIT, aspecciati.j) malees
this excellent point - that FM doesnt need to be
heavoj, Light-weight FM used well is a great choice!

This Brought us to
Alloy

o Alloy is a first order (primarily) Logic tool to
find a model.,

o Simple codes such as this embody complicated
ideas in the form of simple code that wed Llike
to checke under certain conditions (speci,ad. cases).

o Alloy is an MIT initiative for Light-weight FM.
Nice, clear language thot allows for a variety of
solvers to be used. Easy to use, distributed as a

JAK

Disadvantages

o We want ko unteract with the actual
code! This isnt Fossibt& with Alloy
AS=LS...

o Model finding AND checking is the
qoal...

Code...

o So we started b:j importing a subset of the
Alloy grammar. Instead of Java, using C+
+ (ma&mtj as we wanhk to interface with C++
based tools).

o Created an interface to 23 for a SAT
solver (mirrored off of the very excellent
project - “Souper”).

o So this starts to find models...

Buk, Atlcaov Allows
»xtnmra% Lo

Our hacking does NOT reproduce
one of the most essential features
of Alloy - the ability to interactively
find and explore models!

Large caveat buk... somekimes you
CON m«iv do whak you can do...

Fact }

AST (sv\ippeﬁ)

Hink

Eixpr

EXPI‘COV\SE&ME

Exprr’:‘ teld

Ahaivsis

ExFrLE,s&

Expr\e’m

LM Attmv Model

siq Lattice { many Node !
siq Node {
rho: lone Float,

p: lone Floak

Annotations

// compute density and velocity from the f's
__attribute ((annotate('"calculation"))) (e T
L / * !

="£[27 :+ £[5] FEF6T;
=4 F 0]+ £ Ko E3)
= f[4] + £[7] + £[8];

*rho = upperLine + mediumLine + lowerLine;

*Uux (f[11 + £[5] + £[8] - (f[3] + f[6] + f[7]1))/(*rho);

*uy = (upperLine - lowerLine)/(*rho);

// compute local equilibrium from rho and u
computeEquilibrium(A }

’ ’)

{
= c[iPop][0]*ux + c[iPop][l]*uy;
rho * t[iPop] * (
1w +73% *c u +4 5% CTUSEE—S10S X1 ST
)i
}
// bgk collision term
__attribute ((annotate("collision"))) (* 3 *
= *((*)selfData);
double . 4 P
computeMacros (fPop, &rho, &ux, &uy);
= ux*uxtuy*uy;

(i1Pop=0; iPop<9; ++iPop) {
fPop[iPop] *= (l-omega);
fPop[iPop] += omega * computeEquilibrium (
iPop, rho, ux, uy, uSqr);

Automatbed Pass
Amaijsis

Annctations are a nice “trick” to leverage to
automatically Link to a pass,

Our first pass matches the IR Metadata to

From there we geherate AR using ain
additional pass for model gueries.

IR can be used for symbolic execution,
other wmeans to veriva a spe&i‘,{w state.

Slicing & Dicing

Program

CFG

Domwaiin 1

Dowaiin 2

Breake AP&E omams

based on CFC d@.penciem‘:&e.s

Verification and
Amaijsis

o LLVM Passes (Ferkays a bit obvious, buk
mavb@. wrong?) leveraging IKOS*

o In LBM, the code (and CFG) is quite
simple. Extraction from IR to AR is
reasonably pleasant (so more to prove

Laker).

o AR to IR (Transformation + Insertion)
allows for various forms of checking.

* We have a colleague investigating more advanced toolsets
(similar to IKOS - also from NASA; some of the same folis)

Hugk Level

Ai.i.ov
Inaestion

Interfoces

& i
$AT Solver

Source

Ccm[p&t@.

S|k

Checles

Dbt s

o Converting to/from constraints AR is non-
Erivial. This exampte WOT kS V\E;c:etj due bto
ks simptici&vﬂ

o For hown-trivial logical &ssump&ioms a

great deal more of work is required.

o Once we can have the AR, because of its
resemblance bo IR nconsistencies are a bik
easier,

Model Lang.
St MATY

For now we've chosen to weaw’tv (bu,ggv)
support Alloy functions and commands,

Maimtv this is due ko resources bubk also
because we wank to be able ko in ject
analysis directly to the AR processing,
(Ehinke inline), and that’s a more
original conbribubkion,

Disadvantages

o Our analysis run as passes and generally any
optimizations that are part of the compilation
chain are not verified as our approach tangentially,

o We're not analyzing everything, just critical code
sections,

o If we fail, we currently dont have a good
mechanism to inform for necessary changes - this
s BIG by the WY (Similar to clang’s o\bitiﬁv to
sugqgest a solution, we need a similar ‘Diagnostics
Engine’ for FM we believe).

Resulks

o We can diff the found model vs, the
resultant implementation.

o Also can inject code for sym. execution of
the resulkant implementation subject to
o\ssum!p&ov\s«

o Moving beyond the simple, explaining
results isht all that easy... We need much
friendlier errors!

Conclusion

We used a modeling language (well, we hijacked one that we
Like) to find a model.

Used this to enforce certain conditions, here, physics
conservation laws for special cases (Le. ho energy source BC).

Interact with the code, but leave the source mihimaﬂv altered
(ideally). Trying to separate the higher and lower logical
tdeas.

Transformation ot Intermediate forms allow exchange of the
high/low level information for analysis. lcie&iiv however the
Representation for FM is VERY easily translated from LLVM IR,

Wanked ko bkie this ko bthe cieveto-gmav\?: toolchain...

o

Lok wore worlke ko
be downe here

Growing fleld, an exciting field, especially for those
nmathenmatically tneclined,

Tools need to be integrated in our opinion,

LLVM is o good place to continue work, But while we'd
like to see LLVM incorporate more FM, FM should
likely fib the LLVM “style” (usability especially).

Lots of separate players - it was easy for us to talk to
foliks abt DARPA, harder to find the right person okt NASA
for example. Different goals as well... (Likely part of
the probi.@.m).

Whal We're Up To...

o Think abouk majbe another layer for translations?
SIL for Swift; maybe an IL to ease logic/FM
translations ko and from IR?

o Loks wore work ko evaluake backend kools...

o Error messaqges, translating modeling logic to
code logic? Or majbe Ehis is wrong and it should
be in the code?

o Talk to FM folks and arque they NEED to work
wikh compiler and kools grau,ps!

