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Analysis via 
Formal Methods

What are Formal Methods? 

Why should they be used? 

Who should be using them?  FM & 
LLVM Community… 

Our Approach to integrating FM into 
LLVM…



What are Formal 
Methods?

Formal Methods are a set of 
techniques used to construct and/or 
verify a mathematical model of a 
system, in this case a software system… 

Hoare Logic, 1969, formal set of 
logical rules to reason about computer 
programs.



The Basics Start in 
*101

The idea of a particle is a model - in 
reality there’s no such thing. 

Many of the engineering approximations 
we use in day to day constructions are 
derived from more generalized physics; 
Maxwell’s equations -> Ohm’s Law; F = 
m*a (is only true for constant mass, and 
is a simplification of the Hamiltonian).



Some Physics 
Examples
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Hamiltonian leads to every day usage (and the 
common simplification) of Newton’s Law.



Formal Methods in 
Engineering

in ME, EE, AE, etc, we don’t use the 
term “Formal Methods”; instead we 
have “Free Body Diagrams”, instead of 
a verifier, we have CAD, FE Solvers, etc.  

These tools all “model” the underlying 
physics and engineering 
approximations.



Pencil/Paper or 
whiteboard 

CAD 

Numerical Simulation 

3-D print or small 
prototyping for scaled 
tests 

Build it!

Software ought to have more modeling uses.  The tools were a bit lacking but 
these days are actually quite good - see Kathleen Fischer (USENIX 2015)

Pencil/Paper or 
whiteboard 

Alloy 

Coq 

tests - logic/unit/
etc. 

Deploy!



In Software…

In software a model is usually 
thought of in terms of MVC (Model 
View Controller) paradigms, where the 
engineer is separating the components.   

This isn’t a true “model” as the M is 
written in code and actually 
implemented.



Formal Methods
Fundamentally Software can be approached 
via logic - the mathematical 
underpinnings… 

In physics we are usually concerned with 
the states of time, position, velocity… 

In software, we’re concerned with state 
information, as defined by available types 
to the program.



In other words, we’re generally replacing differential 
equations (equations of motion, electromagnets, 
differential geometry, etc.) with logical operations 
such as joins, unions, disjunction, and so forth.  
Replacing calculations with Calculational Logic (see R. 
Blackhouse for text examples). 

A few quick examples: 

Disjunction… Basically an OR statement; but DNF is 
fundamental in analysis for proving theorems (DNF, 
each variable only appears once in every clause). 

floor(x)  can be defined for all float x, the answer 
is an integer such that n <= x; this means n <= 
floor(x); (float)n <=x; implying floor(x) <= x; 
demanding that “floor” always rounds down.



Assignment: Given a pre and post conditions 
for assignment it can be possible to calculate 
an appropriate assignment statement. 

Suppose s and n satisfy s=n^2 and we want to 
maintain this while incrementing n (n++); pre 
s=n^2; post s = (n+j)^2 and holds for all j (1,
…).  Then s is incremented by 2*n + 1.   

While this is fairly trivial these calculations 
are much more reliable than an educated 
guess, which is often implemented.  How 
often have you seen “Oh I just did…” and 
then later on…



Formal Methods 
Generally

In Software, foundational uses of logic 
allow us to transfer code or pseudo code 
into a form for modeling… 

This could be “find” a model, a means a 
prototyping via logic 

Or this could be “checking” a model, 
involving the construction of appropriate 
tests, evaluation of code, etc.



FM Jargon 101
Invariants - true condition for duration of 
the program. 

Intervals 

Abstract Domains, polyhedra.. 

Fixed Point Iteration - convergence 

Linear constraints - defines boundaries/limits 

and so on…. 



FM and LLVM

Samples of LLVM & FM: VeLLVM, IKOS, 
SMACK, along with others..  So folks 
have been and are continuing to 
work here! 

LLVM IR is not ideal for FM as a 
standalone but it’s not meant to! :<) 
But it’s a great starter..



Opportunities

Moving beyond IR, LLVM is modular 
and has so many tools for development 
that FM ought to move into this space. 

Specific tools for FM space should be 
developed and become part of the 
community, especially as LLVM 
continues to grow in the embedded 
space.



ø Issues?
ø nodes; these represent a partial 
disjunction over at least some variables.  
For non-relational domains (think: 
intervals) this is fine, but for relational 
abstractions (think: polyhedra) which want 
to describe properties over all program 
variables this is “very challenging” 

We haven’t seen anyone “daring” enough to 
really take this on.



Instruction Sets?

Certain instructions can also 
represent challenges, as complex 
instructions are ideally regularized 
(simplified). 

As an example, a complex pointer 
arithmetic operation (gep) is 
replaced by pointer shifting (pshift).



IR Control Flow

Conditional branch instructions can 
pose a problem where invariants 
might cross over basic blocks 
(propagation) for the branches.   

Typically analysis would desire 
abstract domains that are 
independent as possible.  



Who’s Doing What in 
FM?

Formal Methods are increasingly used everywhere (but this 
is still a minority). 

Critical systems are the most common uses.  NASA, NIST, 
DARPA, other government uses for infrastructure and so on 
in rapidly developing interesting technology and use cases. 

Facebook uses Confer, attempting to bridge the gap of FM 
and modern development life cycle. 

In Industry this has been gaining favor for a while as well.  
MSFT invested heavily in FM and greatly reduced the “blue 
screen of death” via SMACK.



VeLLVM
VeLLVM (UPenn), created some 
verifiable LLVM passes. 

Formalized semantics of IR, for 
example, the undef value and 
intentional underspecification. 

Extracted an interpreter from formal 
semantics.



SeaHorn

Takes program and generates IR for 
verification. 

Inline code, seahorn_assert(…), 
assume(…). 

Only linear constraints, interval 
domains…



IKOS
Developed @ NASA by the formal 
methods group.  NASA is very 
concerned with reliability issues in 
software 

Inference Kernel, generic operations 
for analysis provided. 

Example has an LLVM front-end.



Other Intermediate 
Forms: CIL

Attempts to stay close to C in a “clean” 
representation. 

High level representation, attempting to 
retain the higher level information that is 
often encapsulated in source. 

Simplified branching, etc, are core concepts. 

Obvious issue is if you’re doing something 
outside of C…



Intermediate 
Forms: BAP

If you saw the DARPA Grand Cyber 
Challenge, BAP (Binary Analysis Platform) 
was an essential component. 

Carnegie Mellon’s entry (Mayhem) used BAP 
for automated security analysis.   

Uses an IL (Intermediate Language) but is 
often lifted to SSA form (per LLVM) for 
analysis passes, etc - BAP has LLVM bindings.



Intermediate 
Forms: AR

AR (Abstract Representation) NASA 
AR is our choice.  Replaced ø nodes 
are replaced with assignments, 
pointer arithmetic is simplified, etc. 

CFG based representation of the 
program is essential for domain 
construction.



Example

Ok, let’s do a “simple” example of 
applying FM…



Lattice Boltzmann 
Method

LBM is a gas dynamics method for solving 
hydrodynamic equations. 

Based on the Boltzmann distribution, it’s a rare 
- time dependent - physical model.   

Because of our emphasis on realizing models we 
should mention that this very strong theoretical 
physics model has some poor assumptions (only 
binary collisions!), but it still very successful 
(generally carefully constructed).



LBM Code =“simple”
  // compute density and velocity from the f's                                                                                                                             
void computeMacros(double* f, double* rho, double* ux, double* uy) {
    double upperLine  = f[2] + f[5] + f[6];
    double mediumLine = f[0] + f[1] + f[3];
    double lowerLine  = f[4] + f[7] + f[8];
    *rho = upperLine + mediumLine + lowerLine;
    *ux  = (f[1] + f[5] + f[8] - (f[3] + f[6] + f[7]))/(*rho);
    *uy  = (upperLine - lowerLine)/(*rho);
}

  // compute local equilibrium from rho and u                                                                                                                              
double computeEquilibrium(int iPop, double rho,
                          double ux, double uy, double uSqr)
{
    double c_u = c[iPop][0]*ux + c[iPop][1]*uy;
    return rho * t[iPop] * (
               1. + 3.*c_u + 4.5*c_u*c_u - 1.5*uSqr
           );
}

  // bgk collision term                                                                                                                                                    
void bgk(double* fPop, void* selfData) {
    double omega = *((double*)selfData);
    double rho, ux, uy;
    computeMacros(fPop, &rho, &ux, &uy);
    double uSqr = ux*ux+uy*uy;
    int iPop;
    for(iPop=0; iPop<9; ++iPop) {
        fPop[iPop] *= (1-omega);
        fPop[iPop] += omega * computeEquilibrium (
                                  iPop, rho, ux, uy, uSqr );
    }
}



In practice, we verify 
via the Physics!

Conservation of mass, momentum, energy are 
relatively simple checks to ensure the calculations are 
correct.

f d!v∫ = ρ = fi
i
∑

!u ⋅ f ⋅d!v
c
∫ = ρ !u = ui

i
∑ fi

mass

momentum



Notice these give us good pre/post conditions as 
discussed earlier.  They look slightly different but 
really aren’t that complicated.  

Our pre ∑f and post ∑f are the check to verify 
correct assignments.   

In this we are taking graduate level physics, and 
determining that simple checks for code quality 
can be constructed using assignment conditions 
at critical sections. 

Alloy (Daniel Jackson @MIT, especially) makes 
this excellent point - that FM doesn’t need to be 
heavy, light-weight FM used well is a great choice!



This Brought us to 
Alloy

Alloy is a first order (primarily) logic tool to 
find a model.   

Simple codes such as this embody complicated 
ideas in the form of simple code that we’d like 
to check under certain conditions (special cases). 

Alloy is an MIT initiative for light-weight FM.  
Nice, clear language that allows for a variety of 
solvers to be used.  Easy to use, distributed as a 
JAR



Disadvantages

We want to interact with the actual 
code!  This isn’t possible with Alloy 
as-is… 

Model finding AND checking is the 
goal…



Code…
So we started by importing a subset of the 
Alloy grammar.  Instead of Java, using C+
+ (mainly as we want to interface with C++ 
based tools). 

Created an interface to Z3 for a SAT 
solver (mirrored off of the very excellent 
project - “Souper”). 

So this starts to find models…



But, Alloy Allows 
Exploration

Our hacking does NOT reproduce 
one of the most essential features 
of Alloy - the ability to interactively 
find and explore models! 

Large caveat but… sometimes you 
can only do what you can do…



AST (snippet)

ExprField

Expr

ExprVarExprListExprConstant

Sig

Fact Hint

Analysis



LBM Alloy Model
sig Lattice { many Node } 

sig Node { 

rho: lone Float, 

p: lone Float 

  } 

   ….



Annotations
  // compute density and velocity from the f's                                                                                                                             
__attribute__((annotate("calculation"))) void computeMacros(double* f, double* rho, 
double* ux, double* uy) {
    double upperLine  = f[2] + f[5] + f[6];
    double mediumLine = f[0] + f[1] + f[3];
    double lowerLine  = f[4] + f[7] + f[8];
    *rho = upperLine + mediumLine + lowerLine;
    *ux  = (f[1] + f[5] + f[8] - (f[3] + f[6] + f[7]))/(*rho);
    *uy  = (upperLine - lowerLine)/(*rho);
}

  // compute local equilibrium from rho and u                                                                                                                              
double computeEquilibrium(int iPop, double rho,
                          double ux, double uy, double uSqr)
{
    double c_u = c[iPop][0]*ux + c[iPop][1]*uy;
    return rho * t[iPop] * (
               1. + 3.*c_u + 4.5*c_u*c_u - 1.5*uSqr
           );
}

  // bgk collision term                                                                                                                                                    
__attribute__((annotate("collision"))) void bgk(double* fPop, void* selfData) {
    double omega = *((double*)selfData);
    double rho, ux, uy;
    computeMacros(fPop, &rho, &ux, &uy);
    double uSqr = ux*ux+uy*uy;
    int iPop;
    for(iPop=0; iPop<9; ++iPop) {
        fPop[iPop] *= (1-omega);
        fPop[iPop] += omega * computeEquilibrium (
                                  iPop, rho, ux, uy, uSqr );
    }
}



Automated Pass 
Analysis

Annotations are a nice “trick” to leverage to 
automatically link to a pass.   

Our first pass matches the IR Metadata to 
Alloy-spec. 

From there we generate AR using an 
additional pass for model queries. 

IR can be used for symbolic execution, 
other means to verify a specific state.



Slicing & Dicing

Program

CFG

Break Apart Domains 
based on CFG dependencies

Domain 1

Domain 2



Verification and 
Analysis

LLVM Passes (perhaps a bit obvious, but 
maybe wrong?) leveraging IKOS* 

In LBM, the code (and CFG) is quite 
simple.  Extraction from IR to AR is 
reasonably pleasant (so more to prove 
later).   

AR to IR (Transformation + Insertion) 
allows for various forms of checking.

* We have a colleague investigating more advanced toolsets 
(similar to IKOS - also from NASA; some of the same folks)



High Level

Z3 
SAT Solver

Interfaces

Alloy 
Ingestion

AR IR

CompileFM

Source

Checks

SMTLib2



Diff’s
Converting to/from constraints AR is non-
trivial. This example works nicely due to 
its simplicity. 

For non-trivial logical assumptions a 
great deal more of work is required. 

Once we can have the AR, because of its 
resemblance to IR inconsistencies are a bit 
easier.



Model Lang. 
Summary

For now we’ve chosen to weakly (buggy) 
support Alloy functions and commands.  

Mainly this is due to resources but also 
because we want to be able to inject 
analysis directly to the AR processing, 
(think inline), and that’s a more 
original contribution.



Disadvantages
Our analysis run as passes and generally any 
optimizations that are part of the compilation 
chain are not verified as our approach tangentially. 

We’re not analyzing everything, just critical code 
sections. 

If we fail, we currently don’t have a good 
mechanism to inform for necessary changes - this 
is BIG by the way…  (Similar to clang’s ability to 
suggest a solution, we need a similar ‘Diagnostics 
Engine’  for FM we believe).



Results
We can diff the found model vs. the 
resultant implementation.   

Also can inject code for sym. execution of 
the resultant implementation subject to 
assumptions. 

Moving beyond the simple, explaining 
results isn’t all that easy…  We need much 
friendlier errors!



Conclusion
We used a modeling language (well, we hijacked one that we 
like) to find a model. 

Used this to enforce certain conditions, here, physics 
conservation laws for special cases (i.e. no energy source BC). 

Interact with the code, but leave the source minimally altered 
(ideally).  Trying to separate the higher and lower logical 
ideas. 

Transformation at Intermediate forms allow exchange of the 
high/low level information for analysis.  Ideally however the 
Representation for FM is VERY easily translated from LLVM IR. 

Wanted to tie this to the development toolchain…



Lot more work to 
be done here

Growing field, an exciting field, especially for those 
mathematically inclined. 

Tools need to be integrated in our opinion. 

LLVM is a good place to continue work.  But while we’d 
like to see LLVM incorporate more FM, FM should 
likely fit the LLVM “style” (usability especially). 

Lots of separate players - it was easy for us to talk to 
folks at DARPA, harder to find the right person at NASA 
for example.  Different goals as well… (likely part of 
the problem).



What We’re Up To…
Think about maybe another layer for translations?  
SIL for Swift; maybe an IL to ease logic/FM 
translations to and from IR? 

Lots more work to evaluate backend tools… 

Error messages, translating modeling logic to 
code logic?  Or maybe this is wrong and it should 
be in the code? 

Talk to FM folks and argue they NEED to work 
with compiler and tools groups!


