
Minutes of the EuroLLVM 2016 "Compilers in Education" BoF
Introduction slides: https://docs.google.com/presentation/
d/13aamtJ9SVuUKDv7eLpfmUs_O6Y6QY2un12Imdpzl_Fw/edit?usp=sharing

TU Eindhoven course overview:
 Four assignments
 1. Backend programming with AVR
 Teaches compiler organization (AST, IR, MI), instruction selection (using DAG and
patterns), scheduling, and register allocation
 2. Optimization layer, writing passes
 Organization of LLVM and basic analysis of IR. Also includes writing a basic list
scheduling algorithm.
 3. Code optimization and loop transformations
 The effect of loop optimizations, kinds of optimizations possible, analyzed using an
example image processing program. Teaches profiling with perf to understand the effects of
transformations. Also covers auto vectorization and polyhedral optimizations.
 4. Code generation for heterogeneous architectures
 OpenMP4, CUDA, OpenCL. Tools, usage, and internal design issues for the compiler,
includes run-time libraries and linker support.

 Organized as 8 weeks, each with 2 lectures and 2 hours of assignment support + online
forum for questions.

Cambridge course materials:

• http://compilerteaching.github.io
Cambridge course overview:
 https://www.cl.cam.ac.uk/teaching/1516/L25/

 David Cisnel's priorities
 OpenCL type languages
 Scripting languages like Javascript

Overview of issues to consider
 * Most courses are based on flex/bison, which is now very little of what compilers do
 * Students need to understand back-end transformation, code generation, register allocation
but studying one back-end may vendor-lock them.
 * Teaching multiple backends at a lower depth might help.
 * Teaching weird architectures (heterogeneous), too
 * Middle level optimisations may prove hard to re-run a course once they go upstream
 * Finding new stuff every year may take it to a too advanced level for undergraduate, or
even master courses
 * Handing assignment grading is a pain and error prone when the complexity of the code
moves away from the dragon book
 * We need both practical and abstract approach (academia and industry need both at different
levels)
 * Harder courses will train better students, but may spook many good students
 * The software engineering training is as important as the content, since compilers are
generally very large and complex systems
 * Proposing industry projects to students (mainly master) is an intersting avenue

Floor comments

 Importance of nuts and bolts.Give students a toolbox
 Want al courses to be like this
 David Chisnall will write the book - one
 Want students to understand ramifications of SSA
 More graph theory
 More profiling
 In Cambridge this is part of OS
 TU Eindhoven teaches students the use and understanding of the perf tool
 More modern loop analysis. E.g compute on the fly
 Example course from floor
 Broad theory course
 Then write full C++ cimpiler so see why theory matters
 Note value of students working on a very large prog.
 Issue of vendor lock in
 Note Roel teaches multiple architectures
 More specifically, AVR, ARM, and x86, but others are used as examples

 If you have a 40 hour project suitable for a student tell David

