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Introduction 

 

 
{ R17:16 = MEMD(R0++M1)       

  MEMD(R6++M1) = R25:24      

  R20 = CMPY(R20, R8):<<1:rnd:sat    

  R11:10 = VADDH(R11:10, R13:12) 

 }:endloop0 
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Complex Multiply 

Vector 4x16-bit Add 

64-bit Load and  

64-bit Store with post-update addressing  

HW-loop end 
•Dec count 

•Compare 

•Jump top 

What is VLIW?   Very Long Instruction Word architecture 

 Hardware designed to execute multiple instructions in parallel 

 Instructions to be executed are statically scheduled by compiler 

 Example VLIW instruction “packet”, performs 29 RISC-style operations in one 
cycle: 
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Motivation 

 Qualcomm’s Hexagon™ is a VLIW DSP with an optimizing assembler 

 llvm-mc adapted for use as a stand-alone assembler 
 

 Very little native support for VLIW in the MC layer 

 Designed to stream a single MCInst at a time, with minimal modification 
 

 Packet awareness needed for packet optimization passes, such as: 

 Enforcing instruction ordering within the packet 

– Packet must be shuffled to conform to hardware execution slot restrictions 

 Creation of duplex encodings for code size reduction 

– Combine two instructions as a single 32-bit word when possible 

 Handling new-value loads/stores 

– Use values loaded in the packet for other operations within the same packet 

» Example:  { R2 = memh(R4+#8)    // load half-word  

     memw(R5) = R2.new } // store newly loaded value 
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Implementation 

 Extend MCInst via sub-class named “HexagonMCInst” 

 Necessary for capturing extra information needed for packet optimization 

 

 Create nested HexagonMCInst bundle for each instruction packet 

 Define top-level HexagonMCInst with opcode = BUNDLE 

 Define individual HexagonMCInst packet instructions  

 Add all packet instructions to top-level bundle as instruction operands  

 

 HexagonMCInst bundle passes through the MC layer intact 

 Treated as a single MCInst by the MC layer 

 Packet optimizations are applied to entire bundle in Hexagon-specific passes 

 Hexagon sub-classes of streamer objects unroll each bundle for final output  
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Example 

 Sample packet: { R2 = memh(R4+#8)    // load half-word  

     memw(R5) = R2.new } // store newly loaded value 

 MC layer bundle :     HexagonMCInst (Opcode = BUNDLE)           

                

             MCOperand (type = Inst) 

                    

                        Inst = HexagonMCInst (Opcode = “memh”)  

                        

                                  MCOperand (“R2”)   

                                  MCOperand (“R4”) 

                                  MCOperand (“#8”) 

                

             MCOperand (type = Inst)   

                    

                        Inst = HexagonMCInst (Opcode = “memw”) 

                         

                                  MCOperand (“R5”)   

                                  MCOperand (“R2.new”) 
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Conclusion 

 Basic design of MCInst is very well suited to VLIW 

 Bundling approach outlined in this presentation worked very well for 
representing instruction packets 

 

 Other aspects of current MC layer design not well suited to VLIW 

 Parser assumes mnemonic is always the first token 

– Not true for Hexagon - more flexibility in mnemonic placement is needed 

 Parser does not support creation of packets 

– Hexagon parser requires lots of custom code in order to build instruction bundles 

– Need ability to make several token parsing passes prior to invoking streamer 

 Info needed for enforcing order in a packet is lost in lowering from MI to MC 

– Primary reason for sub-classing MCInst 

– Sub-classing raised other issues not covered here 

 

 Future MC layer design decisions should take VLIW into consideration 
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Thank You 
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