
© 2013 

Link-Time Optimization 

without Linker Support 

Yunzhong Gao 
Sony Computer Entertainment 

LLVM Dev Meeting, 7 Nov 2013 



Motivation 

• PlayStation®4 toolchain is based on Clang 

• Uses a proprietary linker which does not (yet) 

understand LLVM libLTO plugin 

• Game developers looking for every last bit of 

performance 

• Would LTO in linker be useful for game developers? 

Can we get LTO now, before doing that work? 



Taking a Huge Detour… 
• Compile each source to bitcode 

Input bc files 



Taking a Huge Detour… 
• Save the libraries and other files for later 

Input bc files Input object files 



Taking a Huge Detour… 
• Run llvm-link to combine several input .bc files into one 

Input bc files Input object files 

Combined bc file 

llvm-link 



Taking a Huge Detour… 
• Run opt on the combined .bc file 

Input bc files Input object files 

Combined bc file 

llvm-link 

opt -mergefunc -std-link-opts 



Taking a Huge Detour… 
• Run llc to generate combined .o file 

Input bc files Input object files 

Combined bc file 

llvm-link 

opt 

object file 

llc -filetype=obj -O3 



Taking a Huge Detour… 
• Normal link with the combined .o file 

Input bc files Input object files 

Combined bc file 

llvm-link 

opt 

object file 

llc 

Output executable 

PS4TM 

linker 
PS4TM linker 



Taking a Huge Detour… 
• Not fun to patch this into an existing build process… 

Input bc files Input object files 

Combined bc file 

llvm-link 

opt 

object file 

llc 

Output executable 

PS4TM 

linker 
PS4TM linker 



Trick the build process 

• Write a Python script to do all the hard parts 

• Rename original linker, replace it with our script 

• Add –flto to the compilation steps to generate bitcode 

• Link step runs our script 

• Hey, it kind of works! 

 Enough for experimentation/evaluation, anyway 

 Limitation: opt does not know what symbols are 

referenced externally; need to mark some stuff with 

__attribute__((used)) 



LTO is worth the trouble 
Bullet benchmark: 

• Memory footprint reduced > 50% at -O2 

 Text size reduced ~ 15% 

 Data size reduced ~ 45% 

 BSS size reduced > 90% 

• Size improvements similar to linker’s dead-stripping 

 Dead-stripping is cheaper in build-time 

• Execution time reduced ~ 5% versus non-LTO at -O2 



LTO is worth the trouble 

One major PS4TM launch title tried this LTO implementation, 

and has seen improvement: 

• ~10% code size 

• ~6% run time 


