Link-Time Optimization
without Linker Support

Yunzhong Gao
Sony Computer Entertainment

LLVM Dev Meeting, 7 Nov 2013
PUBLIC

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn



L Motivation

PlayStation®4 toolchain is based on Clang

Uses a proprietary linker which does not (yet)
understand LLVM libLTO plugin

Game developers looking for every last bit of
performance

Would LTO in linker be useful for game developerse
Can we get LTO now, before doing that work?e



L8 Taking a Huge Detour...

| Compile each source to bitcode

Input bc files




L8 Taking a Huge Detour...

@ Save the libraries and other files for later

Input bc files

Input object files



L8 Taking a Huge Detour...

Run llvm-link to combine several input .bc files into one

Input object files

Input bc files
‘ llvm-link

Combined bc file



L8 Taking a Huge Detour...

“Run opt on the combined .bc file

Input bc files

Input object files

llvm-link

Combined bc file " opt -mergefunc -std-link-opts



L8 Taking a Huge Detour...

"Run lic to generate combined .o file

Input bc files

Input object files

llvm-link
Combined bc file " opt

‘ lic -filetype=o0bj -O3

object file




L8 Taking a Huge Detour...

Normal link with the combined .o file

Input bc files

Input object files

llvm-link
Combined bc file "

‘ llc
™

object file “ oy
linker

‘ PS4™ linker
Output executable

opt




L8 Taking a Huge Detour...

Not fun to patch this into an existing build process...

Input bc files

Input object files

llvm-link
Combined bc file opt

‘ lic
object file PS4

‘ PS4™ [inker linker

Output executable




L Trick the build process

Write a Python script to do all the hard parts
Rename original linker, replace it with our script

Add —flto to the compilation steps 1o generate bitcode
Link step runs our script
Hey, It kind of worksl!
Enough for experimentation/evaluation, anyway
Limitfation: opt does not know what symbols are

referenced externally; need to mark some stuff with
__attribute__ ((used))



P LTO is worth the trouble

Bullet benchmark:

Memory footprint reduced > 50% at -O2
Text size reduced ~ 15%
Data size reduced ~ 45%
BSS size reduced > 90%

Size improvements similar to linker's dead-stripping
Dead-stripping is cheaper in build-fime

Execution time reduced ~ 5% versus non-LTO at -O2



P LTO is worth the trouble

One major PS4™ |aunch title fried this LTO implementation,
and has seen improvement:

~10% code size

~6% run time



