| Abstract |

So you're developing an LLVM backend, and you’ve added a
bunch of TableGen patterns, custom DAG combines and other
lowering code; are you done? This poster describes the develop-
ment of a specialized superoptimizer, applied to the output of the
compiler on large codebases, to look for missing optimizations in
the PowerPC backend. This superoptimizer extracts potentially-
Interesting instruction sequences from assembly code and then
uses the open-source CVC4 SMT solver to search for provably-
correct shorter alternatives.

1. What is a superoptimizer? |

A superoptimizer is a program that searches for an optimal se-
guence, often the shortest sequence, of instructions that imple-
ment some set of operations. Early superoptimizers used ex-
haustive searches, relying on testing a large number of trial in-
puts to assess equivalence. Modern superoptimizers, like the one
described here, often use Satisfiability Modulo Theories (SMT)
solvers to prove equivalence for all inputs.

| 2. What is an SMT solver? |

Informally, an SMT solver is a program that attempts to prove,
or disprove, a mathematical formula stated using terms and re-
lations from some set of well known background theories: real
numbers, integers, bit vectors, arrays, lists, etc.

| 3. CVC4 |

CVC4 is a BSD-licensed, extensible, SMT solver:

e Many built-in theories (rational and integer linear arithmetic,
arrays, tuples, records, inductive data types, bit-vectors, and
equality over uninterpreted functions)

e A command-line interface and also a C++ API
¢ Available from: http://cvc4.cs.nyu.edu/web/

A simple example:

CVC4> OPTION ”incremental’;
CVC4> OPTION "produce—models’;

If | have two integers, = and y, are they always equal?

CVC4> x,y : INT;
CVC4> QUERY x =v;
invalid

2013 LLVM Developers’ Meeting, 6-7 November 2013, San Francisco, CA

o OO0 A~ WO DD =

Finding a few needles in some large haystacks:
ldentifying missing target optimizations using a superoptimizer

Hal Finkel

Argonne National Laboratory
hfinkel@anl.gov

Please provide me with a specific counter-example.

CVC4> COUNTERMODEL;
X INT = —1;
y . INT = 0;

What if | assert that x is always positive, then what?

CVC4> ASSERT x >= 0;
CVC4> QUERY x =;
invalid

CVC4> COUNTERMODEL;
X INT =0:;

y :INT =1;

4. A real example |

Let’s validate r185954, an addition to Value Tracking’'s isKknownTo-
BeAPowerOfTwo function, which says, if x and y are known to be
non-zero powers of two, then

(add nsw x, (and x, y))

IS also a non-zero power of two:

5 CVC4> % assert nuw or nsw

CVC4> OPTION "produce—models’;

CVC4> x,y : BITVECTOR(32);

CVC4> ISPOW2 : BITVECTOR(32) —> BOOLEAN = LAMBDA(x :
BITVECTOR(32)): BVPLUS(32, x, Ohexffffffff) & x = 0hex00000000 AND x
/= 0hex00000000;

CVC4> ASSERT ISPOW2(x);

CVC4> ASSERT (BVZEROEXTEND(BVPLUS(32,

(33, x, X & y)) OR (SX(BVPLUS(32, x, x & y), 33)
CVC4> QUERY(ISPOW2(BVPLUS(32, x, x & ¥)));
valid

= BVPLUS(33, X, x & ¥));

5. Solving for satisfying constants |

For building a superoptimizer, we often want to be able to ask
whether there exist some fixed values of a set of constants that
make a formula generally true. How can this be done? Let’s find
bsuchthat f+ f+ f=0bxf:

CVC4> OPTION "produce—models’;
CVC4> b, f: BITVECTOR(64);

First, generate a bunch of random inputs:

A~ W0 NN =

CVC4> fa : BITVECTOR(64) = Ohex0b46a8f39e73154Db;
CVC4> fb : BITVECTOR(64) = Ohex0a490d5cf77a2c00;
CVC4> fc : BITVECTOR(64) = Ohex644fd6d5edd990f2;

then assert that the formula holds for them:

o o0 A~ WO DN =

10

11 |...

CVC4> ASSERT BVPLUS(64, BVPLUS(64, fa, fa), fa) = BVMULT(64, fa, b);
CVC4> ASSERT BVPLUS(64, BVPLUS(64, b, fb), fb) = BVMULT (64, fb, b);
CVC4> ASSERT BVPLUS(64, BVPLUS(64, fc, fc), fc) = BVMULT (64, fc, b);

CVC4> CHECKSAT:
sat

In this special “satisfied” context, we can extract details of the
satisfying solution by asking for a counter-example of the “false”

query:

o o0 A~ WO DN =

CVC4> QUERY FALSE:
invalid
CVC4> COUNTEREXAMPLE;

b : BITVECTOR(64) = 0hex0000000000000003

Now we have a value for b that holds for the provided random
inputs. Verity it for all inputs:

CVC4> ASSERT b = 0hex0000000000000003;
CVC4> QUERY BVPLUS(64, BVPLUS(64, f, f), f) = BVMULT(64, f, b);
valid

6. Modeling 64-bit PowerPC in CVC4 |

Creating CVC4 functions that correspond to the PPC64 fixed-
point instructions is fairly straightforward:

o N oo o »~~ W0 DD =

addi: (BITVECTOR(64), BITVECTOR(16)) —> BITVECTOR(64) =

LAMBDA (ra : BITVECTOR(64), si : BITVECTOR(16)):
BVPLUS(64, ra, SX(si, 64));

i: BITVECTOR(16) —> BITVECTOR(64) =

LAMBDA (si : BITVECTOR(16)): SX(si, 64);

mulli: (BITVECTOR(64), BITVECTOR(16)) —> BITVECTOR(64) =

LAMBDA (ra : BITVECTOR(64), si : BITVECTOR(16)): BVMULT (64,
ra, SX(si, 64)),

mullw: (BITVECTOR(64), BITVECTOR(64)) —> BITVECTOR(64) =

LAMBDA (ra, rb : BITVECTOR(64)): BVMULT (64, SX(ra[31:0],64),
SX(rb[31:0],64));

7. Building the superoptimizer |

The superoptimizer reads from assembly files, tracking register
dependencies, looking for trees of single-user instructions. Why?
Because Iif a tree of single-user instructions has a simpler replace-
ment, then that is almost always preferable and implementable as
an optimization somewhere in the compiler. Then:

e For each single-user tree, translate the tree into a CVC4 expres-
sion

© o0 N oo o0 B~ W NN =

—_i
o

11
12
13
14
15
16
17
18

19 |...

Argon neé

NATIONAL LABORATORY

e Generate all possible (shorter) alternatives with the same inputs
and the same output type

e Combine these alternatives into a large parametrized “switch
statement”

e Use CVC4 to search for a set of input constants, and a value
of the parameter that selects the alternative, that allows proving
equivalence between the original tree and the alternative for all
input values.

| 8. What does it find? |

Sometimes we find simple missing patterns:

o o0 A~ W0 O DND =

xor(r4,li(—1)) —> nand(r4,r4)

mulld(r18,1i(88)) —> mulli(r18,i_0_0)
where:
1.10.0=288

Sometimes we find more complicated things:

cmpw(extsb(r7),extsb(r7)) —> cmpld(r7,r7)

ridicr(clrldi(r6,32),2,61) —> rldic(r6,1 0 0,1 0 1)
where:
100=2
1101 =30

Isel(ré,r5,cmplwi(or(rlwinm(r7,29,31,31),rlwinm(r4,30,31,31)),0),2) —> r5

cmpldi(isel(r4,r3,cmplwi(or(rlwinm(r6,29,31,31),rlwinm(r5,30,31,31)),0),2),0)
—> cmpldi(r3,i 0_0)
where:
100=0

ridicr(clrldi(rlwinm(r4,29,31,31),32),2,61) —> rlwinm(r4,i 0 0,i 0 1,i 0 2)
where:
1100 = 31
101=29
102=29

9. What then?

From most likely to least likely:

e Improve instruction selection, peephole optimization, spill-code
generation, etc.

e Implement target-specific DAG combines

e Improve |IR-level optimizers

