Inte ${ }^{\circledR}$ AVX-512 Architecture

Embedded Broadcast

A source from memory is repeated across all the elements.

	512-bit wide vectors, 32 SIMD
registers	
a new mask registers	
Embedded Rounding Control	
Embedded Broadcast	
New Math instructions	
2-source shuffles	
anther and Scatter	
a	Compress and Expand
Conflict Detection	

Embedded Rounding Control

Static (per instruction) rounding rode
No need to access MXCSR any more!
vaddps zmm7 $\{k 6\}$, zmm2, zmm4 $\{r d\}$ vcvtdq2ps zmm1, zmm2, \{ru\}

All exceptions are always suspended by using embedded RC

Sparse computations are hard for vectorization
for ($\mathrm{i}=0$; $\mathrm{i}<16$; $\mathrm{i}++$) $\{\mathrm{A}[\mathrm{B}[\mathrm{i}]]++;\}$
index $=$ vload $\& B[i]$

// Load $16 \mathrm{~B}[\mathrm{i}]$ $\begin{array}{ll}\text { old_val = vgather } A, \text { index } & \text { // Grab } A[B[i]] \\ \text { new_val }=\text { vadd old_val, +1.0 } & \text { // Compute new values } \\ \text { vscater } A \text {, index, new val } & \text { // Update } A[B[i]]\end{array}$ vscatter A, index, new_val // Update A[B[i]]
Code above is wrong if any values within $\mathrm{B}[\mathrm{i}]$ are duplicated VPCONFLICT instruction detects elements with conflicts

Masking in LLVM

A new Machine Pass:

Before register allocation

- Start from the "blend" operands and go up recursively till mask definition

Check all users of the destination operand before applying the mask

* Mask Propagation Pass does not guarantee full mask propagation over the whole path from blend to compare
* Load/Store operations require exact masking
* FP operations require masking if exceptions are not suppressed
- IR generators should use compiler intrinsics
\qquad

