
LLVM: 10 Short Years Since 1.0

Vikram Adve

LLVM Compiler Research Group

Professor, Computer Science Department
University of Illinois at Urbana-Champaign

 •  Heritage

•  Research

•  Impact

•  Future

Intellectual Heritage
1.  Separation of Concerns [Auslander & Hopkins, CC82]

Ø  Architecture of “The PL.8 compiler”
Ø  Each pass focuses on one task; leave “cleanup” to other passes
Ø  Assumes: strong register allocation; strong (global) optimizations
Ø  Flexible pass reordering
Ø  Few corner cases

2.  SSA [Cytron et al., TOPLAS’91]; SSA-based optzns

3.  Mid-level IR + Machine IR: between SGI and then-GCC

4.  Link-time cross-module opt. [Ayers et al., PLDI 1998]

Intellectual Heritage
5.  Pattern matching ISEL, initially BURG [Fraser, PLDI

'91], later DAG ISEL

6.  Linear-scan reg. alloc. [Poletto & Sarkar, TOPLAS '99]

7.  (Non-adaptive) JIT compilation [Höelzle et al.; others]

… And many more …

Non-Heritage: Ideas Not Adopted
•  UNCOL [1958], ANDF [1991]

•  Low-level IR [RTL: Davidson & Fraser, adopted by GCC]

•  Bit-vector dataflow analysis [long history]

•  Graph coloring reg. alloc [Chaitin; Briggs]

•  Compile-time interprocedural compilation (with caching)
[Hall & Kennedy, Burke and Torczon]

•  Adaptive JIT optimization [Self: Chambers & Ungar]

Big fail: Portability !
LLVM did not try to

solve this

Research Goals
Novel techniques for dynamic compilation [CGO’04]

Ø Flexible IR for dynamic optimization of C, C++,
Ø Division of labor between AOT and JIT optimization
Ø “Lifelong compilation” for arbitrary languages
Ø Compile-time, link-time, install-time, load/run-time, idle-time

Language-independent compilation services
Ø Optimization, codegen, JIT management, exception handling, GC

Memory hierarchy optimization [PLDI’05, PLDI’07]
Ø Data Structure Analysis: Identifying pointer-based data structures
Ø Automatic Pool Allocation: Controlling data structure layout

Impact of Lifelong Compilation

Compile Link Install Load/Run Idle
Mac OpenGL ✔ ✔ ♪
XCode ✔ ✔
Cray ✔ ✔
OpenCL, CUDA ? ✔ ♪
Renderscript ✔ ? ✔ ♪
PNaCl ✔ ? ✔ ♪
Research ✔ ✔ ✔ ✔ ♪

Impact of Language-Independent Services
Static Languages

Ø Imperative: C, C++, Obj-C, D, Fortran, Ada, Erlang
Ø Functional: Haskell, Ocaml, Pure

“Managed” Languages and Run-times
Ø JVM, .NET

Scripting Languages
Ø Python, Ruby, Javascript, ActionScript, Julia

Explicitly Parallel Languages
Ø CUDA, OpenCL, Renderscript, OpenMP

LLVM: Microcontrollers to Supercomputers
Static Languages:

 C, C++, D, Objective C, Objective C++, Fortran,
 Ada, Erlang, Haskell, OCaml, Pure

Managed and Scripting Languages:
 Javascript, ActionScript, Python, Ruby, Julia, .NET

GPU and Parallel Languages:
 OpenGL, CUDA, OpenCL, Renderscript, OpenMP

Only GCC has comparable (or broader)
reach, and only for static languages

The Apple-Google Nexus (Huh?) J
“There’s one thing
[Apple and Google]

still have in common,
one last piece of

technological
brilliance they freely

share with one
another.”	

 –Wired.com, July 2013

“The only thing better than a love letter from Wired is
a long love letter from Wired!”

Notable Accomplishments
•  First production JIT compiler for C-based languages

•  Clang/LLVM have fully replaced GCC in XCode 5

•  Used on both major mobile platforms: iOS and Android

•  Most GPU compute languages (OpenCL, CUDA,
Renderscript) use LLVM

•  First complete C++-11x: language + library

•  First ARM64 compiler in production (iPhone 5s)!

And some nice awards along the way!

2010 SIGPLAN Programming Languages Software Award:
“LLVM has had a dramatic impact on our field ... significant influence on academic
research, not just in compilers but also other areas …”

2012 ACM Software System Award
Ø  Given to one software system worldwide every year.
Ø  Recent winners include Eclipse, VMWare, Eiffel, Boyer-Moore, SSL

2013 CS@Illinois Distinguished Alumni Achievement
Ø  “… graduates who have made professional and technical contributions that bring

distinction to themselves, the department, and the University.”

Lots More To Come: Functional Improvements
•  More complete Windows support

•  More effective profile-guided optimization

•  Improved usability, parallelization for LTO

•  Improved autovectorization

•  Improved debugging support

•  State-of-the-art pointer analysis

…

New Domains and Directions
Any place compiler technology is used!

•  Javascript in Web browsers

•  Java in production and research (Hotspot, JikesRVM)

•  Linux kernels and derivatives: Android, ChromeOS, …

•  Embedded systems

•  Heterogeneous SoCs

•  More IDEs: Xcode only works for MacHeads!

Ok, some of these sound a bit crazy.
But 10 years ago, who would have thought LLVM would

completely replace GCC on all Apple systems?

Thank You!
•  Developer community

•  Broad user community (but get involved!)

•  Critical early research funding: NSF, UIUC

Advice to junior faculty:

•  Find students smarter than you.

•  Sit back and enjoy the ride!

