i
i~

v Using LLVM In the
presence of timing

constraints
v |

Dave Lacey
LLVM European Developers Meeting
30" April 2013

<4

&

OOOOOOOOOOOOOOOOOOOOOOOOO

XMOS

2% XMOS and LLVM

= XMOS uses LLVM to implement C + XC compilers:

Moving to
clang

llvm-gcc

XMOS LLVM 3.0 XMOS
XC frontend XCore binutils
Backend
Want to
upgrade to
C with extensions for 3.3+ |
. N >
concurrency, real-time 1/0,
memory safety
\ / MULTICORE MICROCONTROLLERS

XMOS

b N 4
y‘ Real-time WCET constraints

\ 4
Code for our devices is hard real-time

A

port p, 4
time t tl, t2;

walt for edge and timestamp (p, &tl); ‘*ﬁ\\

L___h‘thetimebetween

while (!cond) { these points is less
. that 270ns then
output signal and timestamp (g, &t2); « the program does
timing assert ((t2 - tl) < 270); not work

wailt for edge and timestamp (p, &tl);
}

We have an analysis tool to check these constraints (XTA)

XMOS

e N 4

) A

XMOS

" What’s the problem?

LLVM has many optimizations
In general, these optimization aim to improve average
execution time not worst case execution time

In general, these optimization aim to make the whole
function (or perhaps loop within the function) faster - no
prioritization between execution paths

Optimizations can make things much worse (from a
WCET perspective)

My
y v Example: Scheduling

v

Scheduling can mess things up:

port p, g;
time t tl, t2;

walt for edge and timestamp (p, &tl);
while (!cond) {
[code sequence 1]

output signal and timestamp (g, &t2);
timing assert ((t2 - tl) < 270);
[code sequence 2]

walt for edge and timestamp (p, &tl);

XMOS

Constraints are met.
The program works!

N 4
v Example: Scheduling

&N

Scheduling can mess things up:

port p, 4
time t tl, t2;

walt for edge and timestamp (p, &tl);

while (!cond) {
[code sequence 1]
[code sequence 2]
output signal and timestamp (g, &t2);
timing assert ((t2 - tl) < 270);

walt for edge and timestamp (p, &tl);

XMOS

Takes too long.
Broken!

MULTICORE MICROCONTROLLERS

MYy

N

* Example: Invariant hoisting

Loop invariant hoisting can mess things up:

port p, 4
time t tl, t2;

while (!cond) {
[code sequence 1]
output signal and timestamp (g,
timing assert ((t2 - tl) < 270);
[code sequence 2]

walt for edge and timestamp (p,

}

walt for edge and timestamp (p, &tl);

&t2);

&tl);

XMOS

Constraints are met.
The program works!

e N 4

~ v
Loop invariant hoiscan mess things up:
port p, q;

time t tl, t2;
walt for edge and timestamp (p, &tl);

[code sequence 2]

while (!cond) {
[code sequence 1]
output signal and timestamp (g, &t2);
timing assert ((t2 - tl) < 270);

walt for edge and timestamp (p, &tl);
}

XMOS

v Example: Invariant hoisting

Takes too long.
Broken!

. W 4 |
2w What are we going to do?

v

What are we going to do....

Um...

XMOS

b WV 4
2% Some hopes

XMOS

Most optimizations are OK
We can sort most of this out in the scheduler

... but that requires a scheduler that isn’t just a basic
block scheduler

Need to avoid a big fork. Most platforms/code do not
care about this as much so cannot rewrite LLVM to be
“worst case constraint aware” everywhere.

Limiting optimizations that cause problems is hopefully a
maitter of tuning rather than rewriting

