
Using LLVM in the

presence of timing

constraints

Dave Lacey

LLVM European Developers Meeting

30th April 2013

XMOS and LLVM

 XMOS uses LLVM to implement C + XC compilers:

LLVM IR

XC

C/C++

ASM

LLVM 3.0
XCore
Backend

llvm-gcc

XMOS
XC frontend

XMOS
binutils

Moving to
clang

Want to
upgrade to

3.3+ C with extensions for
concurrency, real-time I/O,

memory safety

Real-time WCET constraints

 Code for our devices is hard real-time

port p, q;

time_t t1, t2;

…

wait_for_edge_and_timestamp(p, &t1);

…

while (!cond) {

 …

 output_signal_and_timestamp(q, &t2);

 timing_assert((t2 – t1) < 270);

 …

 wait_for_edge_and_timestamp(p, &t1);

}

If the time between
these points is less
that 270ns then
the program does
not work

 We have an analysis tool to check these constraints (XTA)

What’s the problem?

 LLVM has many optimizations

 In general, these optimization aim to improve average

execution time not worst case execution time

 In general, these optimization aim to make the whole

function (or perhaps loop within the function) faster - no

prioritization between execution paths

 Optimizations can make things much worse (from a

WCET perspective)

Example: Scheduling

 Scheduling can mess things up:

port p, q;

time_t t1, t2;

…

wait_for_edge_and_timestamp(p, &t1);

…

while (!cond) {

 [code sequence 1]

 output_signal_and_timestamp(q, &t2);

 timing_assert((t2 – t1) < 270);

 [code sequence 2]

 [code sequence 3]

 wait_for_edge_and_timestamp(p, &t1);

}

Constraints are met.

The program works!

Example: Scheduling

 Scheduling can mess things up:

port p, q;

time_t t1, t2;

…

wait_for_edge_and_timestamp(p, &t1);

…

while (!cond) {

 [code sequence 1]

 [code sequence 2]

 output_signal_and_timestamp(q, &t2);

 timing_assert((t2 – t1) < 270);

 [code sequence 3]

 wait_for_edge_and_timestamp(p, &t1);

}

Takes too long.

Broken!

Example: Invariant hoisting

 Loop invariant hoisting can mess things up:

port p, q;

time_t t1, t2;

…

wait_for_edge_and_timestamp(p, &t1);

…

while (!cond) {

 [code sequence 1]

 output_signal_and_timestamp(q, &t2);

 timing_assert((t2 – t1) < 270);

 [code sequence 2]

 [code sequence 3]

 wait_for_edge_and_timestamp(p, &t1);

}

Constraints are met.

The program works!

Example: Invariant hoisting

 Loop invariant hoiscan mess things up:

port p, q;

time_t t1, t2;

…

wait_for_edge_and_timestamp(p, &t1);

…

[code sequence 2]

while (!cond) {

 [code sequence 1]

 output_signal_and_timestamp(q, &t2);

 timing_assert((t2 – t1) < 270);

 [code sequence 3]

 wait_for_edge_and_timestamp(p, &t1);

}

Takes too long.

Broken!

What are we going to do?

 What are we going to do….

 Um…

Some hopes

 Most optimizations are OK

 We can sort most of this out in the scheduler

 … but that requires a scheduler that isn’t just a basic

block scheduler

 Need to avoid a big fork. Most platforms/code do not

care about this as much so cannot rewrite LLVM to be

“worst case constraint aware” everywhere.

 Limiting optimizations that cause problems is hopefully a

matter of tuning rather than rewriting

