
Noise: User-DefinedOptimizationStrategies
Ralf Karrenberg, Marcel Köster, Roland Leißa, Yevgeniya Kovalenko, Sebastian Hack

www.cdl.uni-saarland.de/projects/noise

Setting
Automatic optimization strategies (e.g. "-O3") often do not produce the

code that the programmer desires. This can be due to:

• Too imprecise static analysis results

• Cost function deficiencies

• Detrimental optimization effects

• Suboptimal optimization order ("phase ordering problem")

Therefore, programmers often try to outsmart the compiler by manually
"optimizing" the code. However, this has a number of disadvantages:

• Time cost

• Error proneness

• Illegible/unmaintainable code

• Does not scale with #target architectures

This is especially important for legacy code in the High-Performance
Computing (HPC) environment, but is also relevant in other performance-
sensitive fields such as computer graphics.

Noise
• Language extension for Clang

• Create user-defined optimization strategies for code segments

• Fine-grained control over applied optimizations

• Conveniently tune code without actually rewriting it

• Other parts of the program are optimized as before

Example
float g(float x) { return x + 42.f; }

void testNoiseWFV(float x, float* in, float* out) {
NOISE("loopfusion inline(g) vectorize(8) unroll(4)")
{
for (int i=0; i<32; ++i) {

float lic = x * g(x);
out[i] = in[i] + lic;

}
for (int i=0; i<32; ++i) {

out[i] *= x;
}

}
}

Transformations
The current implementation allows to employ all transformations available
in LLVM under the LLVM-internal names (e.g. dead code elimination [dce]
and loop invariant code motion [licm]). Additionally, we implemented the
following special-purpose transformations:

Function Inlining

Force inlining of specific function calls without relying on the compiler’s
heuristics. This possibly allows additional optimization opportunities after-
wards, e.g. transformations that would have to be inter-procedural before
now can be applied locally.

Explicit Loop Unrolling

We provide the possibility to both rely on LLVM’s heuristics for unrolling
or to force it explicitly with unroll(N). If N is not supplied, the phase itself
decides whether and how the loop should be unrolled.

Loop Vectorization

In addition to the LLVM-internal phases bb-vectorize and loop-vectorize
we provide wfv-vectorize, a wrapper around libWFV that can be used to
vectorize data-parallel loops.

Loop Fusion

Fuse multiple loops into a single one by merging their bodies. Annotated
loops are not required to directly succeed each other. This enables com-
plex combinations of loop fusion and code motion.

Specialized Loop Dispatching

Create specialized variants of the annotated loop and introduce a dynamic
dispatcher (case distinction on the specialized variable). Uncover further
optimization potential by exploiting knowledge about runtime values of a
variable.

Preliminary Results
We are currently evaluating Noise in an HPC environment:

• Performance-critical regions of molecular dynamics legacy code.
• First results confirm applicability, usability, and improved work-flow.
• Phase-ordering still a problem, but now transparent to programmer.

Result (Pseudo Code)
void testNoiseWFV(float x, float* in, float* out) {

<8 x float>* inv = (<8 x float>*)in;
<8 x float>* outv = (<8 x float>*)out;
float lic = x * (x + 42.f);
outv[0] = SIMD_mul(SIMD_add(inv[0], lic), x);
outv[1] = SIMD_mul(SIMD_add(inv[1], lic), x);
outv[2] = SIMD_mul(SIMD_add(inv[2], lic), x);
outv[3] = SIMD_mul(SIMD_add(inv[3], lic), x);

}

Acknowledgements


