
LLVM backend for TILE64
The backend in its current state provides the following features:

• Tilera ABI compliance
• Handling variadic functions
• Allocating dynamic local variables

• Generating position-independent code
• Utilizing TILE64 VLIW capabilities
• Generating Tile Processor Assembly Code

It is available on GitHub:

https://github.com/llvm-tilera

Dávid Juhász, Tamás Kozsik
juhda@caesar.elte.hu, kto@elte.hu

Department of Programming Languages and Compilers
Faculty of Informatics, Eötvös Loránd University

Pázmány Péter sétány 1/C, Budapest 1117, Hungary

What is TILE64?
TILE64 is an energy-efficient massively parallel processor architecture, which was the first
commercial product of Tilera Corporation.

• 64 general purpose processor cores (tiles) connected by a mesh-network

• short-pipeline, in-order, three-issue cores

• VLIW instruction set

– supporting RISC instructions
– extended with SIMD and DSP-related operations

• the speed of the interconnection between tiles is one hop per tick

• the edges of the mesh are connected to I/O interfaces

– four DDR2 controllers
– two 10-gigabit Ethernet interfaces
– two four-lane PCIe interfaces
– a software-configured “flexible” I/O interface

Unresolved issues
There are issues seeming to be special ones, but trends in hardware industry make them common
problems for new architectures. Such two issues are the followings:

Utilizing special-purpose native instructions

TILE64 has special SIMD and DSP-related instructions that are too complex to be described
conveniently with TableGen patterns of actual SelectionDAG nodes.

Exploiting the power of multiple cores

Forced by the lack of a platform-independent model for thread-level parallelism in LLVM, one
needs to use architecture-specific library calls to implement parallel applications.

Unchangeable default behaviors

Some aspects of code generation are hard-coded into LLVM CodeGen library. The choices that have been made
there may fit mainstream architectures, but just don’t meet the needs of other, more specialized ones.

Argument passing according to the Tilera ABI
• First ten words are passed in registers

• Further parameters are passed in the argument space of the caller

• Alignment is forced by padding on the stack and even in registers

• Padding is conserved inside structs during passing

• All parameters are passed entirely either in registers or on the stack

• If a return value cannot fit in ten registers, then it is passed indirectly

Argument passing by LLVM CodeGen
Some aspects are hard-coded into the library:

• Struct arguments are broken up into component values

• Values are split into register-sized parts

Other ones, like whether to pass a value in register or on the stack, whether a
return value must be passed indirectly or not, are to be defined by backends.

...

locals

further varargs

lr incoming sp

variadic
callee

fp

r9

r8

. . .

argument space

locals

caller

register slots
for varargs

...

Resolving the discrepancy

Hard-coded decisions can be worked around by restricting the way LLVM IR is used. Constraints on the usage
of struct values could be forced by a transformation pass preparing for instruction selection.

Transformation for passing a struct value as argument:

%struct = type { ... }

declare void @callee(%struct %arg)

define void @caller() {
entry:

%ptr = alloca %struct
%val = load %struct* %ptr
call void @callee(%struct %val)
ret void

}

⇒

%struct = type { ... }

declare void @callee(%struct* byval %arg)

define void @caller() {
entry:

%ptr = alloca %struct
call void @callee(%struct* byval %ptr)
ret void

}

Transformation for passing an undersize struct value as result:

%struct = type { ... }

define %struct @callee() {
entry:

%ptr = alloca %struct
;set struct
%val = load %struct* %ptr
ret %struct %val

}

define void @caller() {
entry:

%val = call %struct @callee()
ret void

}

⇒

%struct = type { ... }
%wrapper = type iN ;where N is the size of the struct

define %wrapper @callee() {
entry:

%ptr = alloca %struct
;set struct
%wrapper_ptr = bitcast %struct* %ptr to %wrapper*
%wrapped_val = load %wrapper* %wrapper_ptr
ret %wrapper %wrapped_val

}

define void @caller() {
entry:

%wrapped_val = call %wrapper @callee()
%wrapper_ptr = alloca %wrapper
store %wrapper %wrapped_val, %wrapper* %wrapper_ptr
%ptr = bitcast %wrapper* %wrapper_ptr to %struct*
%val = load %struct* %ptr
ret void

}

VLIW packetizing

Utilizing VLIW feature introduced in LLVM 3.2 gives promising results, however the machin-
ery could be improved to fully suit VLIW capabilities of TILE64.

Implementing a VLIW packetizer
VLIW-scheduler automaton generated from TableGen
description:

• Declare functional units

• Classify instructions regarding functional units

• Bundling by looking for a suitable functional unit

TILE64 has further constraints for valid bundles:

• three functional units

• 64-bit bundles with different sized instruction codes

• therefore, there are two- and three-issue bundles

Constraints beyond availability of functional units can-
not be expressed by actual TableGen facilities. A patched
VLIWPacketizerList is used for validating bundles cre-
ated by the scheduler automaton.

Measuring execution times

 0.1

 1

 10

queens msort qsort life crc32 hu man nbody fasta

E
x
e
c
u
ti

o
n
 t

im
e

Program

tile-cc 2.1.2
llvm 3.2 w/o vliw
llvm 3.2 w/ vliw

Nasty technical details

We use pseudo-instructions to postpone generating actual code until proper information is avail-
able. Most of these instructions are suitable for fully automatic generation.

However, custom printing mechanisms have to be provided sometimes. One such example is
the generation of position indepedent code:

GBR gbr:r1
ADDLO_PIC T64GPRF:r0 T64GPRF:r1 picaddr:data
ADDHI_PIC T64GPRF:r0 T64GPRF:r0 picaddr:data

⇒
lnk r0

.BASE POS:
addli r0 r1 lo16(data - .BASE_POS)
auli r0 r0 ha16(data - .BASE_POS)

The EITKIC 12-1-2012-0001 project is supported by the Hungarian Government, managed by the National Development Agency, and financed by the Research and Technology Innovation Fund.


