
 Normalization – parse the command line language
 Resolution – resolve symbols
 Layout – relocate instructions and data
 Emission – emit file by various formats

MCLinker Linking Stages Comparison of Modern Linkers

GNU ld Google gold MCLinker

License GPLv3 GPLv3 UIUC BSD-Style

Target
Platform

All Linux mainstream
devices

ARM, X86, X86_64,
(Mips, SPARC)

ARM, X86, X86_64, Mips
(,X32, Mips64 and Hexagon)

Object Format COFF, a.out, ELF ELF only ELF, extensible

Line of Code 500+K 100+K 50+K

Performance - Fast Fastest
Steadily x2 than GNU ld, x1.3
than Google gold

Intermediate
Representation

The BFD library for
reference graph

None Command line language and
reference graph

 MCLinker is a full-fledged system linker

 The architecture is based on LLVM Machine
Code (MC) layer

 MCLinker is designed for on device linking

 MCLinker is fast, small with low memory usage

 MCLinker is a candidate linker of Android and
BSD standard systems

 MCLinker provides its own intermediate
representation (IR) for efficient transformation and
analysis

Comparison of Linking Speed

Intermediate Representation (IR)

The meaning of a option depends on
 their positions
 the other potions
 Some options have its own grammar

 The input File Tree
Each vertex represents an input file
with its attributes
Linkers resolve symbols by DFS and
merge sections by BFS

 Linker Command Line Language

 MCLinker is the first *ELF linker to provide an
intermediate representation (IR)
 MCLinker provides IR on two levels

Linker Command Line Language
Fragment-Reference Graph

Fragment is the basic linking unit, it can be
A section (coarse granularity)
A block of code or instructions (middle
granularity)
An individual symbol and its code/data (fine
granularity)

MCLinker can trade linking time for the output quality

Example:
$ ld a.o –start-group b.a c.a –end-group d.o e.o

 Fragment-Reference Graph

 A fragment is a block of instruction
code or data in a module

A reference is a symbolic linkage
between two fragments

 A relocation represents an use-define
relationship between two fragments

 Optimization: fragment stripping,
branch optimization, low-level inlining

relocation

use define

symbol define fragment use fragment

a reference

__start __global

fragment

edge

Future Objectives

 MCLinker has successfully linked Android and BSD base system

 The next step is to link Linux kernel and provide more processors support

 MCLinker is contributed by

 many people worldwide

MCLinker
Design and Implementation of a Fragments-based Target-independent Linker http://code.google.com/p/mclinker

