
 Compilation Process:

Ryan Baird1, Brandon Davis2, Dr. Gang-Ryung Uh1, Dr. David Whalley2

Boise State University1 and Florida State University2

Open Source LLVM-VPO Compiler

Project Overview Motivation Project
Media applications are becoming more complex;

mobile devices are being built with low-power

multi-issue mobile processors to manage increasing data

and instruction flow. We’re developing an Open Source

Optimizing compiler from the LLVM [2] and Zephyr [3]

Compiler frameworks so researchers can more easily im-

plement code transformations for low-power Processors.

Future Goals Current Results VPO IR Example

Previous Attempt Current Version

 LLVM Module

 Easy custom code

 Performance Loss

 LLVM Target

 Uses LLC with Optimization

 Performance Loss

VPO w/ LCC LLVM w/ Clang

 Preferred for machine
level Optimizations

 No Support for new
language standards

 Difficult to implement
code-expander for new
architectures

 Preferred for high level
Optimizations

 Support for new language
standards

 Difficult to add support for
new architectures

 File Header:

 Function Definitions:

Mrfdhsu
m registerSize=4
m globalSize = 4
m localSize=4

Architecture Information

-.globl main

dmain GLO[1] 0 0
Global Declarations

-main:

fmain
Function Definition

Dl0.0_a LOC[0] 2 0 4 0 0 Parameter/Local Definitions

+r[25]=GLO[2]

ur[25]

A[4]

+ST=r[25] …

Function Calls

+r[2]=0

ur[2]

+PC=RT

Return

s=r[2];

*

-.end main

Function End

The figure above compares the ratio in execution cycles of

our VPO-LLVM compiler to VPO with LCC. On the MiBench

Test Suite. Numbers less than 1 indicate performance

improvement. The average performance improvement is

above 10%.

 Build a version for ARM

 Build a version for Static Pipeline Architecture [1]

 Fix known performance issues

 Improve Implementation

 Use Pseudo-Registers

 Generate Dead Register Lists

 Simplify target change process

 Handle More Test Cases

Open Source
The current version of the project is available for SVN

checkout. For more information about downloading this

project, visit http://cs.boisestate.edu/~uh/LLVMVPO.htm

Project funded by: Google Faculty Research Awards, Ko-

rea SMBA grant 0004537, and KEIT grant 10041725.

1. I. Finlayson, B. Davis, P. Gavin, G. Uh, D. Whalley, M. Sjalander, and G. Tyson: Improving Processor Efficiency by Statically Pipelining Instructions. In ACM LCTES, 2013.

2. C. Lattner and V. Adve: LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation. In Proceedings of the International Symposium on Code Generation and Optimiza-

tion, March, 2004.

3. M. Benitez and J. Davidson: A Portable Global Optimizer and Linker. In Proceedings of the SIGPLAN’88 Conference on Programming Language Design and Implementation, June, 1988.

Clang LLVM OPT
LLVM-VPO

Translator

C LLVM IR LLVM IR VPO IR
VPO

ASM

