
PAGE 1 Open Source Open Possibilities

Open Source Open Possibilities

Porting LLVM to a Next
Generation DSP
Presented by: L . Taylor Simpson
LLVM Developers’ Meeting: 11/18/2011

PAGE 2 Open Source Open Possibilities

Agenda

 Hexagon DSP

 Initial porting

 Performance improvement

 Future plans

PAGE 3

Open Source Open Possibilities

Hexagon DSP

PAGE 4 Open Source Open Possibilities

Hexagon – Typical DSP Features

Wide computation engine

 8-MAC design, dual 64-bit loads or stores

 Performance meets or exceeds highest-performance industry DSPs

 Native numerical support

 Fractionals, complex

 Saturation, scaling, rounding

 Exploits parallelism at 3 levels

 Unique multi-threaded architecture

 VLIW (up to 4 instructions in parallel)

 SIMD

PAGE 5 Open Source Open Possibilities

Hexagon – Typical CPU features

 Not your grandfather’s DSP!

 Capable of supporting RTOS or high-level OS

 Can run all of SPEC on target

 Supports C/C++ modern programming environment

 High-quality compilers and tools

 Reduces development cost of extensive assembly programming

 Cache-based, hardware-managed memory

 Simplifies programming model and reduces power

 Advanced system architecture

 Precise exceptions

 MMU with address translation and protection

 HW support for virtual machines

 Excellent control code performance

 Can offload work from main CPU

PAGE 6 Open Source Open Possibilities

Hexagon Instruction Example

 Single packet from inner loop of FFT

 Performs 29 “RISC ops” in 1 cycle

 All threads can all be doing this (or something else) in parallel

{ R17:16 = MEMD(R0++M1)

 MEMD(R6++M1) = R25:24

 R20 = CMPY(R20, R8):<<1:rnd:sat

 R11:10 = VADDH(R11:10, R13:12)

 }:endloop0

+ + + +

Complex Multiply

Vector 4x16-bit Add

64-bit Load and

64-bit Store with post-update addressing

HW-loop end
•Dec count

•Compare

•Jump top

Rs

Add

I R

Rt

*

32

<<0-1

*

32

<<0-1

Rd

I R

Add

I R

*

32

<<0-1

*

32

<<0-1

I R

Rs

Rt

-
0x80000x8000

Sat_32 Sat_32

High 16bitsHigh 16bits

I R

PAGE 7

Open Source Open Possibilities

Initial Porting

PAGE 8 Open Source Open Possibilities

LLVM for Hexagon – Initial Porting Effort

 It took 2 engineers 23 days to get Hexagon back end working

 Passing DSP benchmark suite

 It took 107 calendar days to get to 87% performance of GCC

 Leveraged existing assembler, linker, test suite

 Points of efficacy for LLVM

 Robust and easy to port

 Very well designed and documented

 Carefully engineered for compiler construction

 Excellent infrastructure for writing mid-level compiler optimizations

PAGE 9 Open Source Open Possibilities

0

10

20

30

40

50

60

70

80

90
Q

M
a

rk
 S

c
o

re

CFG

optimizations

Add addasl

Improve

predicate spills

Scheduler improvements

LLVM Project Starts

First port to Hexagon complete

Dependence

pruning

Base+offset, super-

regs improvements

Min-Max recognition

Sign-extension

optimizations

Hexagon front-end
Align returns

Packetization

Timeline: LLVM-Hexagon Improvements
Normalized; gcc at -O3 = 100.00

Higher numbers indicate better performance

Dot-new jumps

LTO

Enable and Tune

Post-increment

Improve

Jump

Scheduling

Eliminate sign-
extensions

LTO on

libraries

.new transfers

Remat.

zero extends

Packetizer

lookahead

Days Since Project

PAGE 10 Open Source Open Possibilities

Transition Time

 Simultaneously to LLVM work, GCC moved forward

 New version of GCC for Hexagon released

 Version 4 of Hexagon core released with significant support in GCC

 LLVM only 72% performance of GCC

Quickly improved pass rate to 98%

 Leverage existing compiler test suite

 Initial pass rate for –O0: 49%

 Initial pass rate for –O3: 63%

 Most of the remaining issues are corner cases in C++ front end

 Current status

 LLVM achieves 89% performance of GCC for Hexagon

PAGE 11

Open Source Open Possibilities

Performance Improvement

PAGE 12 Open Source Open Possibilities

Performance Improvement – Instruction Scheduling

Optimal performance for VLIW requires precise scheduling

 Hexagon packetizer

 Originally a post-pass to form packets from scheduled code

 Alias information in scheduler

 Use machine resource constraints during scheduling

PAGE 13 Open Source Open Possibilities

Performance Improvement – Loop Unroller

 Enable loops with runtime trip counts

We have seen both large improvements and losses

 We will likely need some target-specific information

 Patch currently under review

PAGE 14 Open Source Open Possibilities

Performance Improvement - Miscellaneous

 Hardware loop support

 Post-increment

 Loop strength reduction

 Addressing modes: base+offset, post-increment, base+index

 New version of core released

 Numerous new instruction combinations

 More relaxed packet forming rules

 Enhanced predication support

PAGE 15 Open Source Open Possibilities

What is a hardware loop

 Execute loops with zero overhead

 Hexagon has two special instructions

 Hexagon sets up two registers

 Loop start address, SA0/SA1

 Loop count, LC0/LC1

for (i =0; i < n; i++) {
 a += b[i];
}

.L1: {
 r3 = memw(r1++#4)
 r0 = add(r0, #-1)
 }
 {
 p0 = cmp.eq(r0, #0)
 r2 = add(r3, r2)
 if (!p0.new) jump:t .L1
 }

 loop0(.L1, r0)
.L1: {
 r3 = memw(r1++#4)
 }
 {
 r2 = add(r3, r2)
 }:endloop0

Here’s a loop The generated code With hardware loop

PAGE 16

Open Source Open Possibilities

Next Steps

PAGE 17 Open Source Open Possibilities

Next Steps

 Upstreaming our changes

 Code size reduction

 Represent VLIW packets in back end

Multi-basic-block scheduling

 Enable loop unrolling for loops with multiple exits

 Improve alias analysis

 Very important for VLIW scheduling

 Have seen issues with type-based disambiguation

 Expose machine-dependent information to optimizer

 Which addressing modes are supported?

 Which loop unrolling factor is best for target?

 Software pipelining

PAGE 18

Open Source Open Possibilities

Questions?

