
OBJECT FILES IN LLVM

Michael Spencer11/4/2010

2010 LLVM Developers' Meeting

What was my goal in doing this object

file project…

 I wanted a fast, free, and cross platform linker

 Integrated binary tool-chain

Why not replace all of binutils?

 Needed to share object file handling code

throughout the tool-chain

 Library!

11/4/20102010 LLVM Developers' Meeting

What is an Object File?

 An Object File is a structured collection of binary

data

 PE/COFF, ELF, MachO, …

 Translation Units, Executables, and Dynamic Libraries

 Archives

 Raw “.bin” files

 LLVM bitcode

 Different formats provide a disjoint set of features

11/4/20102010 LLVM Developers' Meeting

What is an Object File? (cont)

 There is a common subset of features

 Symbols

 Sections

 Segments

 Relocations

 Every other feature is based off of these

 eg C++ Construction and Destruction of static objects

must occur before main is run. This requires special

handling by the linker and loader.

11/4/20102010 LLVM Developers' Meeting

Current Technology

 Not much has changed with object files

 Libraries

 libbfd – Binary File Descriptor

 20 years old?

 Linkers

 gnu-ld – slow and GPL

 gold – ELF only and GPL

 link.exe – slow, COFF only, and proprietary

 Various system linkers

11/4/20102010 LLVM Developers' Meeting

LLVM’s Current Support

 The Machine Code (MC) library handles assembling

and writing out object files

 Supports various formats

 COFF

 ELF

MachO

 Assembler specific, not designed for generic object

file handling

11/4/20102010 LLVM Developers' Meeting

Why Object Files?

 Freedom

 Not GPL

 Not Proprietary

 Cross Platform Consistency

 Toolset

 API

 Performance

 IPO Through Shared Libraries

 JIT Caching

 Integrated Linker

11/4/20102010 LLVM Developers' Meeting

More Than Just a Linker

 Make it easy to add link time features that would

normally require a “prelinker”

 Constructors and Destructors

 Already handled because of C++, but required changes to

linkers and loaders.

 C++ Open Methods

 LTO

11/4/20102010 LLVM Developers' Meeting

The LLVM Object File Library

 Goals

 Library based

 Unified API for various formats

 Access to details when needed

 Provide replacements for all of binutils

 Speed

11/4/20102010 LLVM Developers' Meeting

Architecture

11/4/20102010 LLVM Developers' Meeting

Architecture

 Layered

 Low Level: Serialization

 Base library that reads and writes

 Depends only on the LLVM System and Support libraries

 No interpretation is performed at this point

 Provides symbols, sections, segments, and relocations

 eg. In ELF the relocation section shows up here, even though other

object files store relocations differently

 Useful for tools like objdump and nm

11/4/20102010 LLVM Developers' Meeting

Architecture

 High Level: Normalization

 Interprets data into a common representation

 Provides a common API for tools to use to access the data

provided by the serialization layer

 Understands and can perform relocations, layout, etc…

 Common form -> {ELF, COFF, MachO} -> Common Form will

end up with what you started with (if the format supports

the feature).

11/4/20102010 LLVM Developers' Meeting

How is libobj faster?

 Zero-Copy

 libbfd copies non-section data from the memory

mapped object file into a struct

 libobj returns an object that contains a reference into

the memory mapped object file and knows how to

extract data from it

 This lowers the physical memory usage and therefore

increases cache reuse and reduces swap file usage

11/4/20102010 LLVM Developers' Meeting

How is libobj faster? (cont)

 Read data a field at a time

Object File formats are generally specified in terms of

C structs with a specified endianness and alignment

 libbfd deals with these issues by reading a byte at a

time

 libobj speeds this up by reading an entire field at a

time and byte swapping if necessary. It reverts to

reading a byte at a time only when the format does not

guarantee alignment and the host does not support

misaligned loads

11/4/20102010 LLVM Developers' Meeting

Implementation

 Endianness and Alignment

 Transparently and quickly dealt with using

packed_endian_specific_integral

// Read in some data from disk.

uint8_t *data = read_binary_data();

// Read a little endian int32

int32_t value = *reinterpret_cast<little32_t*>(data);

// Read a big endian int32

int32_t be_value = *reinterpret_cast<big32_t*>(data + 4);

// Print the result

printf("%d-%d", value, be_value);

calll _read_binary_data

movl (%eax), %eax

movl %eax, 4(%esp)

movl 4(%eax), %eax

bswapl %eax

movl %eax, 8(%esp)

movl $L_.str, (%esp)

calll _printf

11/4/20102010 LLVM Developers' Meeting

Implementation

 Endianness and Alignment (cont…)

 These can be combined into a POD struct.

typedef struct {

aligned_ulittle32_t r_offset;

aligned_ulittle32_t r_info;

} Elf32_Rel;

Elf32_Rel *reloc =

(Elf32_Rel*)read_binary_data(location_of_relocation_entry);

printf("Reloc{ addr: %p, info: %u }",

(void*)(reloc->r_offset),

unsigned(reloc->r_info));

11/4/20102010 LLVM Developers' Meeting

Performance

 I added object file support to llvm-nm and tested it

vs binutils-nm.

 2x faster on Linux

 ~30x faster on Windows (vs. nm via MinGW)

11/4/20102010 LLVM Developers' Meeting

Current Status

 I have currently implemented symbols and sections

in the Serialization layer for COFF and ELF

 I have also worked on some tools

 llvm-nm

Modified to support object files

 llvm-objdump

 Added with support for disassembly via MC

 Working on getting patches into trunk, please

review!

11/4/20102010 LLVM Developers' Meeting

OBJECT FILES IN LLVM

Questions?11/4/2010

2010 LLVM Developers' Meeting

