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What?

• What is MC?
– “Machine code”
– Focus is working with “object files”

• Project started late 2009
– Enabled for production in LLVM 2.8 (Oct 2010)
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Why?

• Direct object writing
– Simplicity, correctness, and performance
– Single source of truth

• Advanced micro-arch optimizations
• Platform for advancing low-level tools
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High-Level Design Goals

• Reuse
• Performance

– No redundant effort
• Testability

– Test components in isolation
• Flexibility

– Many uses for each MC component
• Pluggable Targets
• Non-pluggable Object Formats
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void foo(MCStreamer &Out,
         MCContext &Ctx) {
  ...
  Out.SwitchSection(Ctx.getMachOSection(...));

  ...

}
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void foo(MCStreamer &Out,
         MCContext &Ctx) {
  ...
  Out.EmitSymbolAttribute(Ctx.LookupSymbol(“_main”),
                          MCSymbolAttr::MCSA_Global);
  ...

}
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void foo(MCStreamer &Out,
         MCContext &Ctx) {
  ...
  Out.EmitValueToAlignment(4, 0x90);

  ...

}
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void foo(MCStreamer &Out,
         MCContext &Ctx) {
  ...
  MCInst I = { ??? };
  Out.EmitInstruction(I);
  ...

}
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MCInst

• Second major MC abstraction
• MCInst is a simple representation of a machine instruction

– Consists of opcode and operands
– Operands:

– Registers
– Immediates (constants and expressions)
– Floating point immediates

– Affords simple C API
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The llvm-mc tool

• llvm-mc is the command line tool for testing MC
– Includes assembler, object file writer, and disassembler

• Can use it to show encoding and MCInst structure

$ llvm-mc --show-inst t.s
! pushl! %ebp              ## <MCInst #2044 PUSH32r
                            ##  <MCOperand Reg:44>>

$ llvm-mc --show-encoding t.s
! pushl! %ebp              ## encoding: [0x55]
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• Ties together the parsed instruction with target .td files
• Uses a custom tblgen backend to generate match tables

  ...
  { X86::PUSHF16,   "pushfw", Convert,         { },          0 },
  { X86::PUSH32r,   "pushl",  Convert__Reg1_0, { MCK_GR32 }, 0 },
  { X86::PUSH32rmr, "pushl",  Convert__Reg1_0, { MCK_GR32 }, 0 },
  { X86::PUSHCS32,  "pushl",  Convert,         { MCK_CS },
                                           Feature_In32BitMode },
  ...
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Current Status

• Integrated assembler is default for X86 for Darwin
• Lots of testing and qualification for X86
• ELF/X86-64 support is done

– On by default in Clang top-of-tree
• COFF support is well underway

– Passes many programs in LLVM test-suite repository
• ARM support is ongoing
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Summary

• Good compile-time improvements
• Reduced system complexity
• Many new tools and opportunities
• What’s next?

– JIT needs to be converted
– User-level disassembler
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