
The LLVM Assembler
and Machine Code
Infrastructure

Monday, November 29, 2010

Overview

Monday, November 29, 2010

Overview

• What?

Monday, November 29, 2010

Overview

• What?
• Why?

Monday, November 29, 2010

Overview

• What?
• Why?
• How?

Monday, November 29, 2010

Overview

• What?
• Why?
• How?
• High-Level Design Goals

Monday, November 29, 2010

Overview

• What?
• Why?
• How?
• High-Level Design Goals
• Architecture

Monday, November 29, 2010

Overview

• What?
• Why?
• How?
• High-Level Design Goals
• Architecture
• Status

Monday, November 29, 2010

What?

Monday, November 29, 2010

What?

• What is MC?

Monday, November 29, 2010

What?

• What is MC?
– “Machine code”

Monday, November 29, 2010

What?

• What is MC?
– “Machine code”
– Focus is working with “object files”

Monday, November 29, 2010

What?

• What is MC?
– “Machine code”
– Focus is working with “object files”

• Project started late 2009

Monday, November 29, 2010

What?

• What is MC?
– “Machine code”
– Focus is working with “object files”

• Project started late 2009
– Enabled for production in LLVM 2.8 (Oct 2010)

Monday, November 29, 2010

Why?

Monday, November 29, 2010

Why?

• Direct object writing

Monday, November 29, 2010

Why?

• Direct object writing
– Simplicity, correctness, and performance

Monday, November 29, 2010

Why?

• Direct object writing
– Simplicity, correctness, and performance
– Single source of truth

Monday, November 29, 2010

Why?

• Direct object writing
– Simplicity, correctness, and performance
– Single source of truth

• Advanced micro-arch optimizations

Monday, November 29, 2010

Why?

• Direct object writing
– Simplicity, correctness, and performance
– Single source of truth

• Advanced micro-arch optimizations
• Platform for advancing low-level tools

Monday, November 29, 2010

How?

Monday, November 29, 2010

How?

Code
Generator

Assembly
Printer

Assembly (.s)

Code (.c)

Standard Compiler

Monday, November 29, 2010

How?

Code
Generator

Assembly
Printer

Assembly (.s)

Code (.c)

Standard Compiler

Monday, November 29, 2010

How?

Code
Generator

Assembly
Printer

Assembly (.s)

Code (.c)

Standard Compiler

Code
Generator

Assembly
Printer (JIT)

Execution

Code (.c)

LLVM JIT

JIT
Encoder

Monday, November 29, 2010

How?

Code
Generator

Assembly
Printer

Assembly (.s)

Code (.c)

Standard Compiler

Code
Generator

Assembly
Printer (JIT)

Execution

Code (.c)

LLVM JIT

JIT
Encoder

Monday, November 29, 2010

How?

Code
Generator

Assembly
Printer

Assembly (.s)

Code (.c)

Standard Compiler

Code
Generator

Assembly
Printer (JIT)

Execution

Code (.c)

LLVM JIT

JIT
Encoder

Duplicate Code!

Monday, November 29, 2010

How?

Code
Generator

Assembly
Printer

Assembly (.s)

Code (.c)

Standard Compiler

Code
Generator

Assembly
Printer (JIT)

Execution

Code (.c)

LLVM JIT

JIT
Encoder

Duplicate Code!

No Public API!

Monday, November 29, 2010

How?

Code
Generator

Assembly
Printer

Assembly (.s)

Code (.c)

Standard Compiler

Code
Generator

Assembly
Printer (JIT)

Execution

Code (.c)

LLVM JIT

JIT
Encoder

Duplicate Code!

No Public API!

Monday, November 29, 2010

How?

Monday, November 29, 2010

How?

Code
Generator

Assembly
Printer

Assembly (.s)

Code (.c)

Modern Compiler

Monday, November 29, 2010

How?

Code
Generator

Assembly
Printer

Assembly (.s)

Code (.c)

Modern Compiler

Monday, November 29, 2010

How?

Code
Generator

MCized
Printer

Code (.c)

Modern Compiler

MCStreamer

Monday, November 29, 2010

How?

Code
Generator

MCized
Printer

Code (.c)

Modern Compiler

MCStreamer

AsmPrinter ObjectWriter

Assembly (.s) Object File (.o)

Monday, November 29, 2010

High-Level Design Goals

Monday, November 29, 2010

High-Level Design Goals

• Reuse

Monday, November 29, 2010

High-Level Design Goals

• Reuse
• Performance

Monday, November 29, 2010

High-Level Design Goals

• Reuse
• Performance

– No redundant effort

Monday, November 29, 2010

High-Level Design Goals

• Reuse
• Performance

– No redundant effort
• Testability

Monday, November 29, 2010

High-Level Design Goals

• Reuse
• Performance

– No redundant effort
• Testability

– Test components in isolation

Monday, November 29, 2010

High-Level Design Goals

• Reuse
• Performance

– No redundant effort
• Testability

– Test components in isolation
• Flexibility

Monday, November 29, 2010

High-Level Design Goals

• Reuse
• Performance

– No redundant effort
• Testability

– Test components in isolation
• Flexibility

– Many uses for each MC component

Monday, November 29, 2010

High-Level Design Goals

• Reuse
• Performance

– No redundant effort
• Testability

– Test components in isolation
• Flexibility

– Many uses for each MC component
• Pluggable Targets

Monday, November 29, 2010

High-Level Design Goals

• Reuse
• Performance

– No redundant effort
• Testability

– Test components in isolation
• Flexibility

– Many uses for each MC component
• Pluggable Targets
• Non-pluggable Object Formats

Monday, November 29, 2010

How is MC Used?

Monday, November 29, 2010

How is MC Used?

Object
Writer

Assembler
Parser

Assembly (.s)

Object File (.o)

Monday, November 29, 2010

How is MC Used?

It’s an Assem
bler!

Object
Writer

Assembler
Parser

Assembly (.s)

Object File (.o)

Monday, November 29, 2010

How is MC Used?

It’s an Assem
bler!

Object
Writer

Assembler
Parser

Assembly (.s)

Object File (.o)

Code
Generator

Assembly
Printer

Assembly (.s)

Code (.c)

Monday, November 29, 2010

How is MC Used?

It’s an Assem
bler!

It’s a Com
piler!

Object
Writer

Assembler
Parser

Assembly (.s)

Object File (.o)

Code
Generator

Assembly
Printer

Assembly (.s)

Code (.c)

Monday, November 29, 2010

How is MC Used?

It’s an Assem
bler!

It’s a Com
piler!

Object
Writer

Assembler
Parser

Assembly (.s)

Object File (.o)

Code
Generator

Assembly
Printer

Assembly (.s)

Code (.c)

Code
Generator

Object
Writer

Object File (.o)

Code (.c)

Monday, November 29, 2010

How is MC Used?

It’s an Assem
bler!

It’s a Com
piler!

It’s a Com
pilassem

bler!
Object
Writer

Assembler
Parser

Assembly (.s)

Object File (.o)

Code
Generator

Assembly
Printer

Assembly (.s)

Code (.c)

Code
Generator

Object
Writer

Object File (.o)

Code (.c)

Monday, November 29, 2010

How is MC Used?

It’s an Assem
bler!

It’s a Com
piler!

It’s a Com
pilassem

bler!
Object
Writer

Assembler
Parser

Assembly (.s)

Object File (.o)

Code
Generator

Assembly
Printer

Assembly (.s)

Code (.c)

Code
Generator

Object
Writer

Object File (.o)

Code (.c)

Code
Generator

JIT

Execution!

Code (.c)

Monday, November 29, 2010

How is MC Used?

It’s an Assem
bler!

It’s a Com
piler!

It’s a Com
pilassem

bler!

It’s a JIT!

Object
Writer

Assembler
Parser

Assembly (.s)

Object File (.o)

Code
Generator

Assembly
Printer

Assembly (.s)

Code (.c)

Code
Generator

Object
Writer

Object File (.o)

Code (.c)

Code
Generator

JIT

Execution!

Code (.c)

Monday, November 29, 2010

How is MC Used?

It’s an Assem
bler!

It’s a Com
piler!

It’s a Com
pilassem

bler!

It’s a JIT!

(with inline asm
 support!)

Object
Writer

Assembler
Parser

Assembly (.s)

Object File (.o)

Code
Generator

Assembly
Printer

Assembly (.s)

Code (.c)

Code
Generator

Object
Writer

Object File (.o)

Code (.c)

Code
Generator

JIT

Execution!

Code (.c)

Monday, November 29, 2010

How is MC Used?

It’s an Assem
bler!

It’s a Com
piler!

It’s a Com
pilassem

bler!

It’s a JIT!

(with inline asm
 support!)

Object
Writer

Assembler
Parser

Assembly (.s)

Object File (.o)

Code
Generator

Assembly
Printer

Assembly (.s)

Code (.c)

Code
Generator

Object
Writer

Object File (.o)

Code (.c)

Code
Generator

JIT

Execution!

Code (.c) Object File (.o)

Disassembler

Assembly
Printer

Assembly (.s)

Monday, November 29, 2010

How is MC Used?

It’s an Assem
bler!

It’s a Com
piler!

It’s a Com
pilassem

bler!

It’s a JIT!

(with inline asm
 support!)

It’s a Disassem
bler!

Object
Writer

Assembler
Parser

Assembly (.s)

Object File (.o)

Code
Generator

Assembly
Printer

Assembly (.s)

Code (.c)

Code
Generator

Object
Writer

Object File (.o)

Code (.c)

Code
Generator

JIT

Execution!

Code (.c) Object File (.o)

Disassembler

Assembly
Printer

Assembly (.s)

Monday, November 29, 2010

How is MC Used?

Assembler
Parser

Assembly (.s)

Code
Generator

Code (.c)

Code
Generator

Code (.c)

Code
Generator

Code (.c) Object File (.o)

Disassembler

Object
Writer

Object File (.o)

Assembly
Printer

Assembly (.s)

Object
Writer

Object File (.o)

JIT

Execution!

Assembly
Printer

Assembly (.s)

Monday, November 29, 2010

How is MC Used?

MCStreamer MCInst

Assembler
Parser

Assembly (.s)

Code
Generator

Code (.c)

Code
Generator

Code (.c)

Code
Generator

Code (.c) Object File (.o)

Disassembler

Object
Writer

Object File (.o)

Assembly
Printer

Assembly (.s)

Object
Writer

Object File (.o)

JIT

Execution!

Assembly
Printer

Assembly (.s)

Monday, November 29, 2010

How is MC Used?

MCStreamer MCInst

Assembler
Parser

Assembly (.s)

Code
Generator

Code (.c)

Code
Generator

Code (.c)

Code
Generator

Code (.c) Object File (.o)

Disassembler

Object
Writer

Object File (.o)

Assembly
Printer

Assembly (.s)

Object
Writer

Object File (.o)

JIT

Execution!

Assembly
Printer

Assembly (.s)

Monday, November 29, 2010

MCStreamer

Monday, November 29, 2010

MCStreamer

• Core MC Component

Monday, November 29, 2010

MCStreamer

• Core MC Component
– Programmatic Assembler API

Monday, November 29, 2010

MCStreamer

• Core MC Component
– Programmatic Assembler API
– Best explained by example

Monday, November 29, 2010

MCStreamer

• Core MC Component
– Programmatic Assembler API
– Best explained by example

Monday, November 29, 2010

MCStreamer

Monday, November 29, 2010

MCStreamer

Monday, November 29, 2010

MCStreamer

Monday, November 29, 2010

MCStreamer

Monday, November 29, 2010

MCStreamer

void foo(MCStreamer &Out,
 MCContext &Ctx) {
 ...
 Out.SwitchSection(Ctx.getMachOSection(...));

 ...

}

Monday, November 29, 2010

MCStreamer

Monday, November 29, 2010

MCStreamer

void foo(MCStreamer &Out,
 MCContext &Ctx) {
 ...
 Out.EmitSymbolAttribute(Ctx.LookupSymbol(“_main”),
 MCSymbolAttr::MCSA_Global);
 ...

}

Monday, November 29, 2010

MCStreamer

Monday, November 29, 2010

MCStreamer

void foo(MCStreamer &Out,
 MCContext &Ctx) {
 ...
 Out.EmitValueToAlignment(4, 0x90);

 ...

}

Monday, November 29, 2010

MCStreamer

Monday, November 29, 2010

MCStreamer

void foo(MCStreamer &Out,
 MCContext &Ctx) {
 ...
 Out.EmitLabel(Ctx.LookupSymbol(“_main”));

 ...

}

Monday, November 29, 2010

MCStreamer

void foo(MCStreamer &Out,
 MCContext &Ctx) {
 ...
 Out.EmitLabel(Ctx.LookupSymbol(“_main”));

 ...

}

Monday, November 29, 2010

MCStreamer

Monday, November 29, 2010

MCStreamer

void foo(MCStreamer &Out,
 MCContext &Ctx) {
 ...
 MCInst I = { ??? };
 Out.EmitInstruction(I);
 ...

}

Monday, November 29, 2010

 MCInst

Monday, November 29, 2010

MCInst

Monday, November 29, 2010

MCInst

• Second major MC abstraction

Monday, November 29, 2010

MCInst

• Second major MC abstraction
• MCInst is a simple representation of a machine instruction

Monday, November 29, 2010

MCInst

• Second major MC abstraction
• MCInst is a simple representation of a machine instruction

– Consists of opcode and operands

Monday, November 29, 2010

MCInst

• Second major MC abstraction
• MCInst is a simple representation of a machine instruction

– Consists of opcode and operands
– Operands:

Monday, November 29, 2010

MCInst

• Second major MC abstraction
• MCInst is a simple representation of a machine instruction

– Consists of opcode and operands
– Operands:

– Registers

Monday, November 29, 2010

MCInst

• Second major MC abstraction
• MCInst is a simple representation of a machine instruction

– Consists of opcode and operands
– Operands:

– Registers
– Immediates (constants and expressions)

Monday, November 29, 2010

MCInst

• Second major MC abstraction
• MCInst is a simple representation of a machine instruction

– Consists of opcode and operands
– Operands:

– Registers
– Immediates (constants and expressions)
– Floating point immediates

Monday, November 29, 2010

MCInst

• Second major MC abstraction
• MCInst is a simple representation of a machine instruction

– Consists of opcode and operands
– Operands:

– Registers
– Immediates (constants and expressions)
– Floating point immediates

– Affords simple C API

Monday, November 29, 2010

The llvm-mc tool

Monday, November 29, 2010

The llvm-mc tool

• llvm-mc is the command line tool for testing MC

Monday, November 29, 2010

The llvm-mc tool

• llvm-mc is the command line tool for testing MC
– Includes assembler, object file writer, and disassembler

Monday, November 29, 2010

The llvm-mc tool

• llvm-mc is the command line tool for testing MC
– Includes assembler, object file writer, and disassembler

• Can use it to show encoding and MCInst structure

Monday, November 29, 2010

The llvm-mc tool

• llvm-mc is the command line tool for testing MC
– Includes assembler, object file writer, and disassembler

• Can use it to show encoding and MCInst structure

$ llvm-mc --show-inst t.s
! pushl! %ebp ## <MCInst #2044 PUSH32r
 ## <MCOperand Reg:44>>

Monday, November 29, 2010

The llvm-mc tool

• llvm-mc is the command line tool for testing MC
– Includes assembler, object file writer, and disassembler

• Can use it to show encoding and MCInst structure

$ llvm-mc --show-inst t.s
! pushl! %ebp ## <MCInst #2044 PUSH32r
 ## <MCOperand Reg:44>>

$ llvm-mc --show-encoding t.s
! pushl! %ebp ## encoding: [0x55]

Monday, November 29, 2010

Instruction Matching

Monday, November 29, 2010

Instruction Matching

• Ties together the parsed instruction with target .td files

Monday, November 29, 2010

Instruction Matching

• Ties together the parsed instruction with target .td files
• Uses a custom tblgen backend to generate match tables

Monday, November 29, 2010

Instruction Matching

• Ties together the parsed instruction with target .td files
• Uses a custom tblgen backend to generate match tables

 ...
 { X86::PUSHF16, "pushfw", Convert, { }, 0 },
 { X86::PUSH32r, "pushl", Convert__Reg1_0, { MCK_GR32 }, 0 },
 { X86::PUSH32rmr, "pushl", Convert__Reg1_0, { MCK_GR32 }, 0 },
 { X86::PUSHCS32, "pushl", Convert, { MCK_CS },
 Feature_In32BitMode },
 ...

Monday, November 29, 2010

Instruction Matching

• Ties together the parsed instruction with target .td files
• Uses a custom tblgen backend to generate match tables

 ...
 { X86::PUSHF16, "pushfw", Convert, { }, 0 },
 { X86::PUSH32r, "pushl", Convert__Reg1_0, { MCK_GR32 }, 0 },
 { X86::PUSH32rmr, "pushl", Convert__Reg1_0, { MCK_GR32 }, 0 },
 { X86::PUSHCS32, "pushl", Convert, { MCK_CS },
 Feature_In32BitMode },
 ...

Monday, November 29, 2010

Current Status

Monday, November 29, 2010

Current Status

• Integrated assembler is default for X86 for Darwin

Monday, November 29, 2010

Current Status

• Integrated assembler is default for X86 for Darwin
• Lots of testing and qualification for X86

Monday, November 29, 2010

Current Status

• Integrated assembler is default for X86 for Darwin
• Lots of testing and qualification for X86
• ELF/X86-64 support is done

– On by default in Clang top-of-tree

Monday, November 29, 2010

Current Status

• Integrated assembler is default for X86 for Darwin
• Lots of testing and qualification for X86
• ELF/X86-64 support is done

– On by default in Clang top-of-tree
• COFF support is well underway

– Passes many programs in LLVM test-suite repository

Monday, November 29, 2010

Current Status

• Integrated assembler is default for X86 for Darwin
• Lots of testing and qualification for X86
• ELF/X86-64 support is done

– On by default in Clang top-of-tree
• COFF support is well underway

– Passes many programs in LLVM test-suite repository
• ARM support is ongoing

Monday, November 29, 2010

Current Status: Performance

Monday, November 29, 2010

Current Status: Performance

• Example numbers from SPECCPU’s 403.gcc
– clang with and without -integrated-as
– Using -O0 -g for i386

Monday, November 29, 2010

Current Status: Performance

• Example numbers from SPECCPU’s 403.gcc
– clang with and without -integrated-as
– Using -O0 -g for i386

i386.c insn-emit.c combine.c insn-recog.c
0

1

2

3

4

Co
m

pi
le

 W
al

l T
im

e
(s

)

System Assembler Integrated Assembler

Monday, November 29, 2010

Current Status: Performance

• Example numbers from SPECCPU’s 403.gcc
– clang with and without -integrated-as
– Using -O0 -g for i386

i386.c insn-emit.c combine.c insn-recog.c
0

1

2

3

4

0.790.91Co
m

pi
le

 W
al

l T
im

e
(s

)

System Assembler Integrated Assembler

15
%

 Fa
st

er
!

Monday, November 29, 2010

Current Status: Performance

• Example numbers from SPECCPU’s 403.gcc
– clang with and without -integrated-as
– Using -O0 -g for i386

i386.c insn-emit.c combine.c insn-recog.c
0

1

2

3

4

0.790.91 1.00
1.22

Co
m

pi
le

 W
al

l T
im

e
(s

)

System Assembler Integrated Assembler

15
%

 Fa
st

er
!

22
%

 Fa
st

er
!

Monday, November 29, 2010

Current Status: Performance

• Example numbers from SPECCPU’s 403.gcc
– clang with and without -integrated-as
– Using -O0 -g for i386

i386.c insn-emit.c combine.c insn-recog.c
0

1

2

3

4

0.790.91 1.00
1.22

0.790.89Co
m

pi
le

 W
al

l T
im

e
(s

)

System Assembler Integrated Assembler

15
%

 Fa
st

er
!

22
%

 Fa
st

er
!

13
%

 Fa
st

er
!

Monday, November 29, 2010

Current Status: Performance

• Example numbers from SPECCPU’s 403.gcc
– clang with and without -integrated-as
– Using -O0 -g for i386

i386.c insn-emit.c combine.c insn-recog.c
0

1

2

3

4

0.790.91 1.00
1.22

0.790.89

2.37

3.02

Co
m

pi
le

 W
al

l T
im

e
(s

)

System Assembler Integrated Assembler

15
%

 Fa
st

er
!

22
%

 Fa
st

er
!

13
%

 Fa
st

er
!

27
%

 Fa
st

er
!

Monday, November 29, 2010

Summary

Monday, November 29, 2010

Summary

• Good compile-time improvements

Monday, November 29, 2010

Summary

• Good compile-time improvements
• Reduced system complexity

Monday, November 29, 2010

Summary

• Good compile-time improvements
• Reduced system complexity
• Many new tools and opportunities

Monday, November 29, 2010

Summary

• Good compile-time improvements
• Reduced system complexity
• Many new tools and opportunities
• What’s next?

Monday, November 29, 2010

Summary

• Good compile-time improvements
• Reduced system complexity
• Many new tools and opportunities
• What’s next?

– JIT needs to be converted

Monday, November 29, 2010

Summary

• Good compile-time improvements
• Reduced system complexity
• Many new tools and opportunities
• What’s next?

– JIT needs to be converted
– User-level disassembler

Monday, November 29, 2010

Questions?

Monday, November 29, 2010

