
©2007 The Aerospace Corporation

Building A Cell BE SPE Backend For LLVM

B. Scott Michel, Ph.D.
High Performance Computing Section

Computer Systems Research Department

scottm@aero.org



2

Who, What and Where?

Where: 

The Aerospace Corporation’s Computer Systems Research 
Department

What:

Cluster-based computing, FreeBSD kernel hacking, Grid 
computing, multicore processor architectures, …, and LLVM 
hacking

The Aerospace LLVM Project Team:

Scott Michel, Mark Thomas and Michael AuYeung



3

Why Add A New Backend To LLVM?

• Two multicore families: homogeneous and heterogeneous

– Homogeneous: More execution units, more threads, 
software transactional memory, “It’s manageable!”

– Heterogeneous: Cooperation between specialized and 
general-purpose processors, “It’s a nightmare!”

• Heterogeneous encompasses more than just Cell BE

– General-purpose GPU computing

– Reconfigurable computing (FPGAs, accelerators)

• Research Theme: Multicore programmability for mere mortals…

– Resource allocation between elements

– Reuse CellSPU approach to other heterogeneous platforms

• Step 1: Need to generate CellSPU assembly code…

Compiler hacking for fun and profit!!



4

Cell’s Characteristics

• Unified vector-scalar, 128 element register file

– Register info TD defines 16-, 32- and 64-bit 
integer and floating point register classes

– 64- and 128-bit integer support coming…

– Makes writing Instruction Info TD easier: reuse 
same instruction in multiple contents

• Some 8-bit instructions, but not for math and 
logical ops (many v16i8 special cases)

• Interesting special patterns

– ORC: Or with complement

– SELB, select bits: (A & C) | (B & ~C)

• Used PPC/PPC-64 the starting template
Courtesy of International 
Business Machines 
Corporation.



5

How Far Along?

• 10 instruction groups to implement

– Completed: load/store, constant formation, integer and 
logical, shift/rotate

– Mostly complete: floating point

– Remaining: compare/branch, hint-for-branch, control and 
synchronization

– Dejagnu-based testing: “It looks like we’re generating the 
right code” (and spu-as accepts the code too!)

– GCC implements many of these instructions as intrinsics

• ABI, Structures and unions: “best guess” based on ABI specs

• Need gcc 4.2/4.3 to adequately generate and test real code



6

Challenges

• Really need gcc 4.2 or 4.3 (compiler versions with Cell SPU 
support)
– Generate the intrinsic calls that Cell SDKs support
– Backporting to 4.0 is not an option: SPU’s “md” file uses 

newer features for which there are no backport paths
• Error messages from asserts are close to meaningless to llvm

newcomers (been working on that incrementally)
• Instruction scheduling for SPE

– Dual issue instruction queue, even-odd pipes: loads-stores 
must be on odd pipe, different functional units prefer 
specific pipe

– Doesn’t fit well with current LLVM instruction scheduling 
pass… needs “whole function” scheduling

• Probably issues in current register allocation passes, but don’t 
know yet…



7

Research Roadmap

• Heterogeneous multicore programming is not for mere mortals

• Resource allocation is the underlying problem

– It’s simple: Just identify the code that can be run on the CellSPU…

– Steps 1 and 1a: Vectorizing and data orchestration

– Step 2: message orchestration

– Moving work units into and out of SPU’s local store memory

– Identify additional dependent data, i.e., control state

• Connecting the components

– GPGPU (CTM, CUDA), FPGA (VHDL) etc.,

– More generally, communicating processes, e.g., OpenMPI

• How much support from the language is really needed?

– Google is working on advise module… which could really help!



8

FAQ: When Can I Play With The Cell SPU Backend?

• Hopefully, we will have something to release by end of August

– Code has to pass through Aerospace’s software review and 
release committee before we commit to CVS/SVN

• Michael AuYeung is migrating patches between llvm’s gcc 4.0 
source and gcc 4.2

– Almost finished last week with files beginning with “c”



9

Questions?


	Building A Cell BE SPE Backend For LLVM
	Who, What and Where?
	Why Add A New Backend To LLVM?
	Cell’s Characteristics
	How Far Along?
	Challenges
	Research Roadmap
	FAQ: When Can I Play With The Cell SPU Backend?
	Questions?

