
LLVM Code Generator
Status and Ideas for Future Development

Evan Cheng
Apple Inc.

Lots of Love and Tender Care ...

80 column!!!

Many Targets!

Alpha

ARM + Thumb

IA64

PowerPC

Sparc

X86

Cell, MIPS, and more?

Common Passes

DAG Legalizer, Instruction Selector, Combiner

Instruction Schedulers: reg-pressure and latency

Register Allocator, Spiller, Register Scavenger

If-converter (in development), branch folding, tail
merging

All are working pretty well...

Future!

Refine existing passes

Performance and compile time
improvements

There are some missing pieces!

Instruction Selection

Patterns with accurate cost:

BURG / dynamic programming algorithm
Automatically picking between fp stack and sse regs where
profitable!

let AddedComplexity = 15 in
def MOVLHPSrr : PSI<0x16, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2,
 "movlhps {$src2, $dst|$dst, $src2}",
 [(set VR128:$dst,

 (v4f32 (vector_shuffle VR128:$src1, VR128:$src2,
 MOVHP_shuffle_mask)))]>;

Instruction Selection
Whole Function ISel

extern void a(int);
extern void b(int);

void t(short p) {
 if (p == 3)
 a(p);
 else if (p == 4)
 b(p);
}

_t:
 ...

 cmpw $4, %ax
 je LBB1_3
LBB1_1: #entry
 cmpw $3, %ax
 jne LBB1_4
LBB1_2: #cond_true
 movswl %ax, %eax
 movl %eax, (%esp)
 call L_a$stub

...
LBB1_3: #cond_true9
 subl $16, %esp
 movswl %ax, %eax
 movl %eax, (%esp)
 call L_b$stub

 ...

Instruction Scheduling

Focus should be on improving current
heuristics

How well would it work with “whole
function isel”?

Some targets may benefit from:

Beyond-the-basic-block scheduling

Post-allocation scheduler

Register Allocator
First Phase

PHI elimination using dominator info

Better live interval representation

“Sane” copy coalescing

Live range splitting

Better heuristics for spill weight

Register Allocator
Second Phase

Proper re-materialization

Sub-registers support

Spiller peepholes, shrink wrapping
(for prologue / epilogue)

Register Allocator
Long Term Ideas

Alternative strategies

Graph coloring

Separate global / local allocators

Predicate aware allocator

Missing Pieces

Modeling condition code registers

Tail-call

Machine instruction level LICM

May be subsumed by whole-function isel

Conclusion

We need your participation!

