ML-LLVM-Tools: Towards Seamless Integration of Machine
Learning in Compiler Optimizations

Siddharth Jain', S. VenkataKeerthy' , Umesh Kalvakuntla’,
Albert Cohen?, Ramakrishna Upadrasta’
IIT Hyderabad', Google?

IIII 3

680D 0385 D m 05 rsoens

European LLVM Developers’ Meeting
10" May 2023

Overview

e ML in Compiler Optimizations
o Scheme of ML in Compiler Optimizations
o Proposed Infrastructure

e LLVM-gRPC: gRPC based framework to support Training
o LLVM-gRPC Usage
o Use Case: RL4ReAl, IR2Vec

e LLVM-InferenceEngine: ONNX based framework to support Inference
o Proposed Inference Flow
o LLVM-InferenceEngine Usage
o Compile Time Comparison

e Related Works

e Summary

ML in Compiler Optimizations

Impact of ML in hard, heuristic-based compiler optimizations
o Success of ML in NLP, Image Processing, etc.
e Several ML based compiler optimizations exist

o From late 90s to date

e ML based optimizations

o Loop Vectorization, Loop Distribution, Function Inlining, Phase Ordering, Register Allocation, ...

ML in LLVM

o Inlining decisions (From 11.x), Eviction in Register Allocation (From 14.x)

Scheme of ML in Compiler Optimizations

Model Output + Related Info

Input +
proomam | | Compiler Relarsd [t ML Models
Training /
oOO Inference
Optimization Query > OO
Oot 1 Materialize °
P Predictions Processing
< Model Output + Related Info
Optimization Query
Optn

Scheme of ML in Compiler Optimizations

F>mput —'[Compiler } [ML Models J
rogram -
: Communication . Training /
: ! Inference
Optimization Query > 0O
- ! I
Materialize

Opt 1
< Model Output

Predictions
Optimization Query

Processing

- ————-

Optn
Model Output

Focusing on Communication ...

Input
Program

Materialize
Predictions

Compiler

ML Models
Communication

e Highly Important

(@)

Scalability

(@)

Compile Time Issues

(@)

Memory Issues

e Determines the practicality
o Deployment
o Usability

o

Training /
Inference

Processing

Focusing on Communication ...

Input
Program

Materialize
Predictions

Compiler

Communication

Current Approaches

e No single standard approach

(@)

(@)

(@)

Python wrappers

Compiler flags

e Model written with C++ APlIs

O

O

Tight coupling of APls

ML Models

Training /
Inference

Processing

Limitations of Current Approaches

Scalability Integratability Programmability Portability
* Python/C++ wrappers Not all outputs can be Models written in C++ are Support for diverse ML
e 6x— 100x slowdown communicated via flags not ML developer friendly frameworks

Register Allocation, RLLib, SciPy, ... TF, PyTorch, JAX, ...

Phase Ordering, Loo . _
ng P Instruction Scheduling,

Distribution, ...

Need for scalable, versatile and common framework for
ML-based optimizations in LLVM

Proposed Infrastructure

[Framework + Architecture independent Infrastructure in LLVM
Training Inference
e ML model development in any e Within LLVM
generic framework e Trained models to be exported and
e ML practitioners can develop linked with LLVM toolchain

solutions in Python

LLVM-gRPC LLVM-InferenceEngine

gRPC based library ONNX based library

LLVM-gRPC
gRPC based framework to support Training

LLVM-gRPC

Need for a seamless connection between LLVM and Python ML workloads

o Interprocess communication

gRPC: Modern open source high performance Remote Procedure Call

LLVM-gRPC
o Works as an LLVM library

o [Easy integration — As simple as implementing a few API calls

o Support for any ML + RL workloads

e Use-case: RL4ReAl [CC'23]

S. VenkataKeerthy, Siddharth Jain, Anilava Kundu, Rohit Aggarwal, Albert Cohen, and Ramakrishna Upadrasta. RL4ReAl:
Reinforcement Learning for Register Allocation. CC 2023. https://compilers.cse.iith.ac.in/publications/rl4real/

11
S

https://compilers.cse.iith.ac.in/publications/rl4real/

LLVM-gRPC + Passes

RL Module - Project1 |
(Python) :

[Project 1: Proto Files] <projectNames.proto

| Project N: Proto Files | r /f[LLVM Pass - Project 1} :
[Project-1-gRPCService](_

Auto Generate

Header files . °

-+ ﬁ : :

o []

[Project—N-gRPCService]ﬁ\;
LLVM-gRPC - ~—| LLVM Pass - Project N

[gRPCUtils] libLLVMgRPC.a ST |
(Python) !

...............................

Example Proto File

syntax = "proto3";

package demopass;

// demo pass Service
service demoPass{

// RPC function to send and receive data
// between server and client
rpc getPassInfo (RequestData) returns (PassInfo) ({}

}

demoPass: Defines the service (a C++ class)
which will be auto generated

message RequestData {
string functionName=1;

}

message PassInfo {
int32 numInstruction=1l;

}

Datafields that will be
auto generated using gRPC

getPassiInfo: Defines the RPC function which
has to be overridden

Files generated on compiling proto file:

demoPass.grpc.pb.cc
demoPass.grpc.pb.h
demoPass.pb.cc
demoPass.pb.h
demoPass_pb2_grpc.py
demoPass_pb2.py

13

LLVM-gRPC Usage: C++ Server

using demopass: :RequestData;
using demopass: :PassInfo;
using grpc::Status;

using grpc: :ServerContext;
using demopass: :demoPass;

Types coming from
demoPass.grpc.pb.h

struct Hello : public FunctionPass,demoPass: :Service,gRPCUtil { F———————»Inheﬂﬁngcbs%%

grpc: :Status getPassInfo(grpc::ServerContext* context,
const RequestData* request, PassInfo* response) override ({
// Pass logic to handle the request goes here Implementation of gRPC
e function
return Status::0K;

bool runOnFunction (Function &F) override {

|RunService (this,"0.0.0.0:50051") ; | » Blocking call to start the C++ server

|if(exit_requested) { free(exit_requested) ;} F————+ Exiting blocking call
return false;

LLVM-gRPC Usage: Python Client

import grpc
import demoPass pb2 grpc, demoPass pb2

Service class defined in demoPass_pb2_grpc.py

class demoPassClient(demoPass_pr_grpc.demoPassServicer):I > Inheriting classes

def init (self):
self.host='localhost'
self.server port=50051 Creating a channel and
self.channel=grpc.insecure channel (stub from existing service
"{}:{}'.format (self.host,self.server port))
self.stub= demoPass pb2 grpc.demoPassStub (self.channel)

def getRequest (self,requestData):
request=demoPass pb2.RequestData(requestData) » Callto gRPC function
return (self.stub.getPassInfo (request))

if name == ' main ':
client=demoPassClient ()
functionName=demoPass pb2.functionName (self.current fuction_name)

instruction_count=client.getPassInfo (functionName)

15

Use Case: RL4ReAl

RL4ReAl: Reinforcement Learning for Register Allocation

RL based register allocator for LLVM compiler
Models regalloc as graph coloring problem

Based on MIR2Vec for Machine IR

o An Extension of IR2Vec

Uses LLVM-gRPC

RL4REAL: Reinforcement Learning for Register

Allocation
S. VenkataKeerthy Siddharth Jain Anilava Kundu
IIT Hyderabad 1T Hyderabad 1T Hyderabad
India India India
Rohit Aggarwal Albert Cohen Ramakrishna Upadrasta
IIT Hyderabad Google IIT Hyderabad
India France India

Abstract

We aim to automate decades of research and experience in
register allocation, leveraging machine learning. We tackle
this problem by embedding a multi-agent reinforcement
learning algorithm within LLVM, training it with the state

of the art techniques. We formalize the constraints that pre-

problem is reducible to graph coloring, which is one of the
classical NP-Complete problems [8, 22]. Register allocation
as an optimization involves additional sub-tasks, more than
graph coloring itself [8]. Several formulations have been
proposed that return exact, or heuristic-based solutions.
Broadly, solutions are often formulated as constraint-based

cisely define the problem for a given instruction-set archi-

tecture, while ensuring that the generated code preserves

semantic correctness. We also develop a gRPC based frame-

work providing a modular and efficient compiler interface

for trajninﬁ and inference. Our a@roach is architecture in-

In general, these approaches are known to have scalability
issues. On the other hand, heuristic-based approaches have

been widely used owing to their scalability: reasonable solu-

[34, 38], ILP [3, 5, 12, 42], PBQP [31], game-
theoretic approaches [45), and are fed to a variety of solvers.

S. VenkataKeerthy, Siddharth Jain, Anilava Kundu, Rohit Aggarwal, Albert Cohen, and Ramakrishna Upadrasta. RL4ReAl:
Reinforcement Learning for Register Allocation. CC 2023. https://compilers.cse.iith.ac.in/publications/rl4real/

16

https://compilers.cse.iith.ac.in/publications/rl4real/
https://dl.acm.org/doi/abs/10.1145/3578360.3580273

IR2Vec: LLVM IR Based Scalable Program Embeddings

‘ Seed Embedding Vocabulary

[n] [l]
(e0e0e|i(000e|x(0000] (esee)
k IntegerTy
. YY Yy
¥ - (oo0e =
e000
OnTrJ ing s
(eooe)
| (eees) store
l
; : PTR
. VAR o000
h r t '
%$a.addr = alloca i32, align 4 Symbollc
store, "TypeOf", IntegerTy R
ik ypeOf ety $8b.addr = alloca i32, align 4 Encodlngs
store, "NextInst", store
2 S ’ -~ store i32 %a, i32+* $a.addr, align 4 > W, ((e9e9)) + W,((ee99)) +
store, "Arg1",
= store i32 $b, i32* $b.addr, align 4 W, (20 + (eee9))
(store, "Arg,", PTR)
%0 = load i32, i32* %a.addr, align 4
%1 = load i32, i32* %b.addr, align 4
(ret, "TypeOf", IntegerTy) %add = add nsw i32 %0, %1
(ret, "Arg,", VAR) ~— ret i32 $add —= Wo() + Wt(@) e Wa([:J)

S. VenkataKeerthy, Rohit Aggarwal, Shalini Jain, Maunendra Sankar Desarkar, Ramakrishna Upadrasta, and Y. N. Srikant. IR2VEC: LLVM IR
Based Scalable Program Embeddings. ACM TACO. 2020. https://compilers.cse.iith.ac.in/projects/ir2vec/

17
S

https://compilers.cse.iith.ac.in/projects/ir2vec/

RL4ReAl: Reinforcement Learning for Register Allocation

Embeddings

T
77—

LLVM Environment

~. MLRegAlloc
e N e -
~N. S
N N

Sﬂi/

Update (_O
Split Node \

gRPC
Stub

1

o | Interference ;
unction ! 1
| Graph / :
| O<0O !
Lowering & \\ Register Assignment and spilling K
Optimizatons= ~ ~___ I

Source

code

4/

mm e
Node J \
Embeddings Node K
= Selector % \
/ Agent \
1 \
1
; l Selected
N Node
Task Pick
J Selector % Next node
! Agent \

gRPC
Stub

/ Sp‘ly Yilor \

Split Ipfo \
' ' splitting Coloring \
I’ Agent Agent ‘\

Color Map for all nodes

18

Pros + Cons ...

Ease of development Ease of training Reusability of code
Multiple GPUs distributed

e Transparent to DL/RL i
training

algorithms/policies

Write specifications once and use
in both Python and C++
e Parallel workers for sample

e Supports diverse ML/DL
collection

frameworks

However, LLVM-gRPC is insufficient for inference -

o Overhead on compile time
m Interprocess communication

o Not transparent to user (application developer)

19

LLVM-InferenceEngine

ONNX based framework to support Inference

LLVM-InferenceEngine

e Framework neutral, interoperable infrastructure for trained model integration

e ONNX: Open Neural Network Exchange

o Linux Foundation Project (LF Al & Data)
o Operates in most of the native languages
o Supported by all major ML/DL frameworks

e Usecase study - RL4ReAl [CC'23], POSET-RL [ISPASS'22]

ONNX. Open Neural Network Exchange. 2017, https://github.com/onnx/onnx ONNX

Shalini Jain, Yashas Andaluri, S. VenkataKeerthy and Ramakrishna Upadrasta. POSET-RL: Phase ordering for Optimizing
Size and Execution Time using Reinforcement Learning. ISPASS 2022. https://compilers.cse.iith.ac.in/projects/posetrl/

21

https://github.com/onnx/onnx
https://compilers.cse.iith.ac.in/projects/posetrl/

Model Integration

e Step 1: Exporting trained model from native to ONNX format

e Step 2: Importing model in compiler with ONNX (C++) runtime environment

OR ...
T X

22

Proposed Inference Flow

Trained model
/ RL-Inference Engin_a
®

_/

K

LI'b
_L/

M ONNX Runtime
o Gy)
Agents
— T/ model ;
RL-Optimization ’J e ?
Dnver
Pass

ML-Optimization

\\ Pass

LLVM-InferenceEngine Usage

#include "environment.h"
#include "inference-engine.h"

|struct Hello : public FunctionPass, Environment { ———— Inheriting Environment class

bool runOnFunction (Function &F) override {

InferenceEngine: Creates instance

InferenceEngine* inference_driver = :
of class InferenceEngine class

new InferenceEngine (Environment* env) ;
- - >
1nference_dr1ver-?geFPassInfo(PassData passData, getPassInfo: Function to compute
OptInfo &predictions); predictions from model

24

Compile Time Comparison

RL4ReAl: Reinforcement Learning for Register Allocation

10° BN Greedy I LLVM-InferenceEngine s LLVM-gRPC
- |
(]
£
] 2
o 10
a
£
3 1014
omnetpp namd Ibm libquantum milc sphinx hmmr
. POSET-RL: Phase ordering for Optimizing Size and Execution Time using Reinforcement Learning
10%4
BN Oz W LLVM-InferenceEngine I POSET-RL Original
z 1034
Q
.§ 1024
Q
3 101d
£ 10
O
O 100
leela X264 namd omnetpp xalancbmk povray
Benchmarks

25

Advantages

Features/Advantages of LLVM-InferenceEngine

In-process communication
e No RPC calls, 10, etc.

Lesser compilation time overhead
e No communication overhead

Versatile + Common infrastructure
® Framework and model agnostic

Transparent to the user/programmer

26

Other Related Works

e MLGO: A Machine Learning Framework for Compiler Optimization
o Integrated with LLVM

o Uses TensorFlow APIs and/or raw inter-process communication
o We would like to explore different scenarios and use cases

m RLVs. ML, ...; Single Vs. Multiple communication

e CompilerGym

o Provides environments for training RL based compiler optimizations

Mircea Trofin, et al. "MLGO: a machine learning guided compiler optimizations framework." arXiv preprint 2021.
https://arxiv.org/abs/2101.04808

Chris Cummins, et al. "CompilerGym: Robust, Performant Compiler Optimization Environments for Al Research." CGO

2022. https://github.com/facebookresearch/CompilerGym

https://arxiv.org/abs/2101.04808
https://github.com/facebookresearch/CompilerGym

Summary

e Scalable, Versatile and Common framework for ML-based optimizations in LLVM
o Framework + Architecture independent Infrastructure

e Two components

o Training - LLVM-gRPC

o Inference - LLVM-InferenceEngine

e JRPC based training within Python in a framework independent manner
e In-memory ONNX based library for inference in a transparent manner
e Infrastructure is lightweight showing promising trends

e htips://compilers.cse.iith.ac.in/publications/ml-llvm-tools

28

https://compilers.cse.iith.ac.in/publications/ml-llvm-tools

Thank you!

https://compilers.cse.iith.ac.in/publications/ml-llvm-tools

29

https://compilers.cse.iith.ac.in/publications/ml-llvm-tools

