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Writing libraries is a time consuming task:

> Many man-hours spent fine-tuning code to achieve best performance.

> Has to be adapted and optimized for any new hardware.

 Can we give compilers the task of optimizing libraries that can compete with hand-written 

ones?

In this work, we intend to generate an optimized math library using compiler technologies.

> Aim to support the Basic Linear Algebra Subprograms (BLAS) specification.

> Reduce time taken optimizing/fine-tuning math functions.

> Automatize creation of hardware-specific code.

> Leverage the functionalities and extensibility of the MLIR framework.

Objective: Explore what performance results we can get from this approach (expectation: reach 90% 

of the performance of an in-house hand-tuned BLAS library).

Motivations
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> BLAS: specification that defines a set of linear algebra functions (e.g. dot product, matrix multiplication).

> Reference implementation of BLAS: KunpengBLAS (“KPL”) library (we use the single-thread version).

> Hardware for measurements: Huawei Kunpeng 920 (64bits ARMv8-based processor).

> We particularly focus on GEMM (General Matrix-Matrix multiplication): performance critical.

 GEMM is C = αAB + βC (A, B and C are matrices, α and β are scalars)

 KPL is able to reach >90% of the theoretical peak of the hardware for sgemm/dgemm:

Context: KunpengBLAS library

M=N=K=16
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We rely on the following core transformations:

> Tiling – Apply the operation on subsets (tiles) of the matrices.

> Packing – Re-mapping data in the A and B tiles to get sequential memory accesses.

This follows the work of Goto & Van De Geijn [2] to compile an efficient GEMM.

Their use in an MLIR pipeline has been described by Bondhugula [1].

Context: GEMM Core Transformations

[1] Bondhugula, Uday. "High performance code generation in MLIR: An early case study with gemm." arXiv:2003.00532 (2020).

[2] Goto, Kazushige, and Robert A. van de Geijn. "Anatomy of high-performance matrix multiplication." ACM Transactions on Mathematical 

Software (TOMS) 34.3 (2008): 1-25.

mc

kc

kc

nc

mr

nr
packed

tile of A
packed

tile of B

for j = 0 to N-1 by steps of nc:
for p = 0 to K-1 by steps of kc:
Bc = B(p:p+kc-1, j:j+nc-1) // Pack into Bc
for i = 0 to M-1 by steps of mc:
Ac = A(i:i+m-1,p:p+k-1)  // Pack into Ac
for jj = 0 to nc-1 by steps of nr:

for ii = 0 to mc-1 by steps of mr:
for pp = 0 to kc-1 by steps of 1: // Microkernel
C(ii:ii+mr-1, jj:jj+nr-1) += Ac(ii,ii+mr-1,pp) * Bc(pp,jj:jj+nr-1)

optimized matrix multiplication (pseudocode)
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saxpy.osaxpy.o

Project Overview: Compilation Pipeline

func.func @gemm(%A: tensor<?x?xf32>, %B: tensor<?x?xf32>, %C: tensor<?x?xf32>) -> tensor<?x?xf32> {
%res = linalg.generic ins(%A, %B : tensor<?x?xf32>, tensor<?x?xf32>) outs(%C : tensor<?x?xf32>) {
^bb0(%a: f32, %b: f32, %c: f32):
%m = arith.mulf %a, %b : f32
%a = arith.addf %out, %m : f32
linalg.yield %m : f32

} -> tensor<?x?xf32>
return %res : tensor<?x?xf32>

}

High-level definition 

(simplified for space*)

mlirc --input-file=sgemm.mlir \
--tile-sizes <mc> <nc> <kc> \
--register-tile-sizes <mr> <nr> <kr> \
--hoist-packing <ha> <hb> (…)

sgemm.mlir

sgemm.ll sgemm.o
library 

packager
libblas_mlir.so

Full pipeline to generate/optimize/compile BLAS functions:

> A high-level definition of the function is generated directly in the linalg dialect (does not come from a 

frontend… yet).

> The generated file is given to an optimizing MLIR compiler (mlirc), with a list of transformations to 

apply and their arguments. The optimized functions are packaged into a library (libblas_mlir.so).

sgemv.o saxpy.odgemm.o

*actual gemm is C = α𝐴𝐵 + βC
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Transformations may depend on the specific inputs of the function: one set of transformations/parameters is 

not always good for all possible inputs. For example, packing is not always helpful for small matrices [1].

 We use a multi-kernel approach to enhance each function’s performance:

> For each BLAS function (e.g. gemm), we generate a set of kernels.

> Kernels are optimized variants of the function, tuned for specific inputs.

> At runtime, a kernel selector choses the “best” kernel, based on dynamic information. 

Multi-Kernel Approach

sgemm_small_ins.ll

sgemm_alpha_1.o

library 

packager

(incl. kernel 

selector)

libblas_mlir.somlirc

sgemm_alpha_1.ll

sgemm_beta_0.ll

…

sgemm_beta_0.o

sgemm_small_ins.o

…

[1] Yang, Weiling, et al. "LIBSHALOM: optimizing small and irregular-shaped matrix multiplications on ARMv8 multi-

cores." Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2021.
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Multi-Kernel Approach: Example (axpy)
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*axpy is  𝑦 = α  𝑥 +  𝑦 (scalar multiplication + vector addition)

Using a different kernel for small input vectors and large input vectors gives results consistently >90% 

of the baseline (KPL) for saxpy (single-precision axpy*):

length of 

input vectors
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Several optimizations have been implemented at various levels of the pipeline in order to increase 

performance/functionalities, such as:

High-level optimizations at linalg level:

> Dimensions of A: MxK, dimensions of B: KxN, dimensions of C: MxN

> When N<M: reordering C = (αA)B + βC into C = A(αB) + βC can improve performance:

Optimisations (1)
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Support for extensions of BLAS and new transformations:

Example: supporting mixed-precision GEMM (i.e. element types of A, B and C can differ).

> Easily enabled in MLIR by injecting truncation/extension ops in the MLIR linalg.generic definition.

> Building on a similar transform for transpose operations, we hoist casting ops into the packing loops 

of the corresponding matrix:

Optimisations (2)
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upcasting of B

 MLIR/Baseline (cast in packing)   MLIR/Baseline (cast in microkernel)

for j = 0 to N-1 by steps of nc:
for p = 0 to K-1 by steps of kc:

Bc = B(p:p+kc-1, j:j+nc-1) // Pack into Bc
for i = 0 to M-1 by steps of mc:
Ac = A(i:i+m-1,p:p+k-1)  // Pack into Ac
for jj = 0 to nc-1 by steps of nr:

for ii = 0 to mc-1 by steps of mr:
for pp = 0 to kc-1 by steps of 1: // Microkernel
Ac’ = cast(Ac(ii,ii+mr-1,pp)): Ta into Tc
Bc’ = cast(Bc(pp,jj:jj+nr-1)): Tb into Tc
C(ii:ii+mr-1, jj:jj+nr-1) += Ac’ * Bc'
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Optimisations of MLIR code: 

Example: hoisting of vector.reduction outside of loops:

Optimisations (3)

%x = (…) : f32
%loop = scf.for %i = %lb to %ub step %step iter_args(%arg = %x) -> f32 {
%v1 = (…) : vector<32xf32>
%v2 = (…) : vector<32xf32>
%m = arith.mulf %v1, %v2 : vector<32xf32>
%r = vector.reduction <add>, %m : vector<32xf32> into f32
%a = arith.addf %r, %arg : f32
scf.yield %a : f32

}

%x = (…) : f32 
%zerovec = arith.constant dense<0.000000e+00> : vector<32xf32>
%loop = scf.for %i = %lb to %ub step %step iter_args(%arg = %zerovec) -> vector<32xf32> {
%v1 = (…) : vector<32xf32>
%v2 = (…) : vector<32xf32>
%m = arith.mulf %v1, %v2 : vector<32xf32>
%a = arith.addf %m, %arg : vector<32xf32>
scf.yield %a : vector<32xf32>

}
%r = vector.reduction <add>, %loop, %x : vector<32xf32> into f32

v1 *

m

reduction

+

iter_arg = %x

v2

v1 *

m

0

a

+

iter_arg = %zerovec

v2

reduction (acc = %x)

r

x

a

r

x

 This also applies when the accumulator is a vector (using vector.multi_reduction)
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Optimisations of MLIR code: 

Example: hoisting of vector.reduction outside of loops:

 This optimisation has a significant impact on gemv* (general matrix-vector multiplication):

Optimisations (3 – cont.)
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*gemv is  𝑦 = α𝐴  𝑥 + β  𝑦
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To cover the BLAS API, we need to provide operations on complex inputs (cgemv, cgemm, zgemm, …)

> High-level definition of the ops in linalg is straightforward: inputs with a complex<t> element type.

> However, compiling these operations into efficient code poses some problem:

- Complex tensors are not vectorized.

- The complex dialect lowers to extraction functions (complex.im, complex.re).

- Our current hardware target supports some ARMv8.3-specific complex vector instructions 

(e.g. fcmla – complex multiply and add).

 We would like to make use of them, instead of splitting complex values.

 Existing conversion passes gave us less than 1% of KPL’s performance for cgemm.

Handling of Complex Type
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We considered several options to handle complex operations:

> Transform complex GEMM into a series of real GEMM (cf. 3m and 4m methods for cgemm [1]). 

- Manual implementation and analysis did not show good performance. 

- Prevents use of complex-specific instructions (fcmla).

- Not easily extensible to other complex operations.

Handling of Complex Type: Conversion into Real

[1] Van Zee, Field G., and Tyler M. Smith. "Inducing complex matrix multiplication via the 3m and 4m methods 

FLAME Working Note# 81." (2016).
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We considered several options to handle complex operations:

> Transform complex GEMM into a series of real GEMM (cf. 3m and 4m methods for cgemm [1]). 

- Manual implementation and analysis did not show good performance. 

- Prevents use of complex-specific instructions (fcmla).

- Not easily extensible to other complex operations.

> Our solution/suggestion (WIP!): 

- Support vectorization into vectors of complex<t>.

- Type conversion of complex ranked types into “doubled” ranked types:

vector<MxNxcomplex<t>>  vector<MxNx2xt>

- Extend vector.contraction/outerproduct with kind=<complexadd>.

- Enable lowering to fcmla in the backend by creating a new fcmuladd intrinsic. 

 ⚙ D148068 [AArch64] Lower fused complex multiply-add intrinsic to AArch64::FCMA (llvm.org)

Handling of Complex Type: Conversion into Real

[1] Van Zee, Field G., and Tyler M. Smith. "Inducing complex matrix multiplication via the 3m and 4m methods 

FLAME Working Note# 81." (2016).

https://reviews.llvm.org/D148068


15

Vector operations are updated accordingly:

Handling of Complex Type: Conversion into Real

%cst = complex.constant [0.000000e+00 : f32, 0.000000e+00 : f32] : complex<f32>
%v = vector.transfer_read %t[%c0, %c0], %cst : tensor<?x1xcomplex<f32>>, vector<8x1xcomplex<f32>>
%vt = vector.transpose %v, [1, 0] : vector<8x1xcomplex<f32>> to vector<1x8xcomplex<f32>>
%t3 = vector.transfer_write %vt, %t2[%x, %y, %c0, %c0] : vector<1x8xcomplex<f32>>, tensor<?x?x1x8xcomplex<f32>>

%cst = arith.constant 0.000000e+00 : f32
%v = vector.transfer_read %t[%c0, %c0, %c0], %cst : tensor<?x1x2xf32>, vector<8x1x2xf32>
%vt = vector.transpose %v, [1, 0, 2] : vector<8x1x2xf32> to vector<1x8x2xf32>
%t3 = vector.transfer_write %vt, %t2[%x, %y, %c0, %c0, %c0] : vector<1x8x2xf32>, tensor<?x?x1x8x2xf32>
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Contraction is done with last two dimensions “flattened”:

vector<MxNx2xt>  vector<Mx2Nxt>

 Prevents splitting between real and imaginary values when lowering vectors. 

 Adapted to the input expected by ARMv8.3 fcmla: interleaved real and imaginary parts.

Handling of Complex Type: Conversion into Real

%v = vector.contract {(…), kind = #vector.kind<complexadd>} %a, %b, %c : vector<1x8xcomplex<f32>>, 
vector<1x4xcomplex<f32>> into vector<8x4xcomplex<f32>>

%a1 = vector.shape_cast %a : vector<1x8x2xf32> to vector<1x16xf32>
%b1 = vector.shape_cast %b : vector<1x4x2xf32> to vector<1x8xf32>
%c1 = vector.shape_cast %c : vector<8x4x2xf32> to vector<8x8xf32>
%v0 = vector.contract {(…), kind = #vector.kind<complexadd>} %a1, %b1, %c1 : vector<1x16xf32>, 
vector<1x8xf32> into vector<8x8xf32>
%v = vector.shape_cast %v0 : vector<8x8xf32> to vector<8x4x2xf32>
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Hoisting of vector.shape_cast operations outside of loops:

 This transformation moves vector.shape_cast operations out of the microkernel loop.

Optimisations for Complex Pipeline (1)

%loop = scf.for %i = %lb to %ub step %step iter_args(%arg = %v) -> (vector<4x4x2xf32>) {
%c = vector.shape_cast %arg : vector<4x4x2xf32> to vector<4x8xf32>
%w = (…) : vector<4x8xf32> // use of %c
%r = vector.shape_cast %w : vector<4x8xf32> to vector<4x4x2xf32>
scf.yield %r: vector<4x4x2xf32>

}

%c = vector.shape_cast %v : vector<4x4x2xf32> to vector<4x8xf32>
%loop0 = scf.for %i = %lb to %ub step %step iter_args(%arg = %c) -> (vector<4x8xf32>) {

%w = (…) : vector<4x8xf32> // use of %c (unchanged)
scf.yield %w: vector<4x8xf32>

}
%loop = vector.shape_cast %loop0 : vector<4x8xf32> to vector<4x4x2xf32>
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“Lifting” vector.transfer_read+vector.shape_cast to  tensor.collapse_shape+vector.transfer_read:

> A similar transformation replaces shape_cast+transfer_write with transfer_write+expand_shape.

 Significant performance improvement (>+50%), as tensor.collapse/expand_shape does not involve 

data copy, unlike vector.shape_cast.

Optimisations for Complex Pipeline (2)

%0 = vector.transfer_read %arg0[%c0, %c0, %c0], %arg1 : tensor<1x4x2xf32>, vector<1x4x2xf32>
%1 = vector.shape_cast %0 : vector<1x4x2xf32> to vector<1x8xf32>

%0 = tensor.collapse_shape %arg0 [[0], [1, 2]] : tensor<1x4x2xf32> into tensor<1x8xf32>
%1 = vector.transfer_read %0 [%c0, %c0], %arg1 : tensor<1x8xf32>, vector<1x8xf32>
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Genericity:

> Conversion assumes that the complex type layout fits with complex<t> 2xt. 

> Heavily targeted towards specific hardware with specific instructions for complex type (fcmla).

Interface changes:

> A function taking in a vector<8xcomplex<f32>> now takes in vector<8x2xf32>.

 We use special wrappers at the interface with the packager.

 Working on extending the complex dialect with casting operations complex<t>  2xt and 

2xtcomplex<t>.

Handling of Complex Types: Limitations
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Running sgemm/dgemm on Huawei Kunpeng 920, 1000 random points:

Results: Performance vs KPL (Real GEMM)

Colour (value) sgemm (single precision) dgemm (double precision)

Red (0% - 49% of KPL) None 0.3% of points

Orange (50% - 89% of KPL) 5.6% of points 4.7% of points

Green (90% - 99% of KPL) 92.4% of points 95% of points

Blue (≥100% of KPL) 2% of points None

dgemm
sgemm
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Results: Performance vs KPL (Complex GEMM)

cgemm zgemm

Colour (value) cgemm (single precision) zgemm (double precision)

Red (0% - 49% of KPL) 0.1% of points None

Orange (50% - 89% of KPL) 0.4% of points 1% of points

Green (90% - 99% of KPL) 72.5% of points 18.2% of points

Blue (≥100% of KPL) 27% of points 80.8% of points

Running cgemm/zgemm on Huawei Kunpeng 920, 1000 random points:
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We have leveraged the functionalities of the MLIR framework to:

> Build a full pipeline to generate optimized functions of a BLAS library.

> Use a multi-kernel approach able to dynamically adapt to specific inputs.

> Provide optimizations to achieve results competing with hand-written assembly code.

Ongoing/future work:

> Connect to a DSL (ALP[1]) that would lower to MLIR and use our pipeline. 

 move beyond simply building a library

> Fuse operations to improve performance (some promising results for GEMM already).

> Enable parallelism for a multithread version of the library.

> Target more diverse hardware.

[1] Algebraic Programming @ https://algebraic-programming.github.io

Conclusion & Future Work

https://algebraic-programming.github.io/
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Thank you.
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Backup Slides
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Running sgemm/dgemm on Huawei Kunpeng 920, 1000 random points:

Results: Performance vs OpenBLAS

Colour (value) sgemm dgemm

Red (0% - 49% of OpenBLAS) None 0.3% of points

Orange (50% - 89% of OpenBLAS) 0.5% of points 7% of points

Green (90% - 99% of OpenBLAS) 0.7% of points 72.4% of points

Blue (100%-124% of OpenBLAS) 15.0% of points 20.3% of points

Purple (≥125% of OpenBLAS) 83.8% of points None

sgemm
dgemm
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Results of cgemm/zgemm (1000 random points):

Results: Performance vs OpenBLAS (complex gemm)

cgemm zgemm

Colour (value) cgemm zgemm

Orange (50% - 89% of OpenBLAS) None 0.3% of points

Green (90% - 99% of OpenBLAS) None 0.1% of points

Blue (100% - 124% of OpenBLAS) 0.3% of points 1.7% of points

Purple (≥125% of OpenBLAS) 99.7% of points 97.9% of points
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Results: gemv
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