
Using the Clang Static Analyzer

Vince Bridgers

About this tutorial

▪ “Soup to nuts” – Small amount of theory to a practical example

▪ Why Static Analysis?

▪ Static Analysis in Continuous Integration

▪ What is Cross Translation Unit Analysis, and how Z3 can help

▪ Using Clang Static Analysis on an Open Source Project

▪ Notice most bugs are introduced
early in the development process,
and are coding and design
problems.

▪ Most bugs are found during unit
test, where the cost is higher

▪ The cost of fixing bugs grow
exponentially after release

▪ Conclusion: The earlier the bugs
found, and more bugs found
earlier in the development process
translates to less cost

Why tools like Static Analysis? : Cost of bugs

Source: Applied Software Measurement, Caspers Jones, 1996

Finding Flaws in Source Code

▪ Compiler diagnostics

▪ Code reviews

▪ “Linting” checks, like Clang-tidy

▪ Static Analysis using Symbolic Execution

▪ Analysis Performed executing the code symbolically through simulation

▪ Dynamic Analysis – Examples include UBSAN, TSAN, and ASAN

▪ Analysis performed by instrumenting and running the code on a real target

▪ Difficult to test the entire program, and all paths – dependent upon test cases

Four Pillars of Program Analysis

Examples

False positives

Inner Workings

Compile and

Runtime affects

5

None

Programmatic

checks

No

Clang, gcc, cl

Compiler

diagnostics

Linters, style

checkers

Lint, clang-tidy,

Clang-format,

indent, sparse

Yes

Text/AST

matching

Extra compile step

Static Analysis

Cppcheck, gcc

10+, clang

Yes

Symbolic Execution

Extra compile step

Dynamic Analysis

Not likely, but

possible

Valgrind, gcc

and clang

Injection of runtime

checks, library

Extra compile step,

extended run times

Quick Feedback

Code Change

Automated

Program

Analysis

Manual

Code

Review

Test

Ready to commit

Syntax, Semantic, and Analysis Checks:

Can analyze properties of code that cannot be tested (coding style)!

Automates and offloads portions of manual code review

Tightens up CI loop for many issues

Report coding errors

Typical CI Loop with Automated Analysis

6

Finding bugs with the Compiler

▪ Static analysis can find deeper bugs through program analysis techniques – like memory leaks,
buffer overruns, logic errors.

1: #include <stdio.h>

2: int main(void) {

3: printf("%s%lb%d", "unix", 10, 20);

4: return 0;

5: }

$ clang t.c

t.c:3:17: warning: invalid conversion specifier 'b' [-Wformat-invalid-specifier]

printf("%s%lb%d", "unix", 10, 20);

~~^

t.c:3:35: warning: data argument not used by format string [-Wformat-extra-args]

printf("%s%lb%d", "unix", 10, 20);

~~~~~~~~~              ^

2 warnings generated.



Finding bugs with the Analyzer

▪ This example compiles fine – but there are errors here.

▪ Static analysis can find deeper bugs through program analysis techniques

▪ This one is simple, but imagine a large project – thousands of files, millions of lines of code

1:int function(int b) {

2:    int a, c;

3:    switch (b) {

4:        case 1: a = b / 0; break;

5:        case 4: c = b - 4;

6:                a = b/c; break;

7:    }

8:    return a;

9:}



Program Analysis vs Testing

▪ “Ad hoc” Testing usually tests a subset of paths in the program. 

▪ Usually “happy paths”

▪ May miss errors

▪ It’s fast, but real coverage can be sparse

▪ Same is true for other testing methods such as Sanitizers

▪ All used together – a useful combination

1

2

3

4



Program Analysis vs Testing

▪ Program analysis can exhaustively explore all execution paths

▪ Reports errors as traces, or “chains of reasoning” 

▪ Downside – doesn’t scale well – path explosion

▪ Path Explosion mitigation techniques …

▪ Bounded model checking – breadth-first search approach

▪ Depth-first search for symbolic execution

1

2

3

4

5

6

7

8

12



Clang Static Analyzer (CSA)

▪ The CSA performs context-sensitive, inter-procedural analysis

▪ Designed to be fast to detect common mistakes

▪ Speed comes at the expense of some precision

▪ Normally, clang static analysis works in the boundary of a single translation unit. 

▪ With additional steps and configuration, static analysis can use multiple translation units. 



Clang Static Analyzer – Symbolic Execution

b: $b

b: $b b: $b b: $b

b: $b

b: $b

c: 0

b: $b

c: 0

▪ Finds bugs without running the code

▪ Path sensitive analysis

▪ CFGs used to create exploded graphs of 
simulated control flows

int function(int b) {

int a, c;

switch (b) {

case 1: a = b / 0; break;

case 4: c = b – 4;

a = b/c; break;

}

return a;

}

default case 1
case 4

switch(b)

$b=[1,1] $b=[4,4]

c=b-4

a=b/0
$b=[4,4]

a=b/c

Return

Garbage value

Divide by 0

Divide by 0

Source: Clang Static Analysis - Gabor Horvath - Meeting C++ 2016

Compiler 

warns here



Using the Clang Static Analyzer – Example 1

▪ Basic example …. 

▪ $  clang --analyze div0.c

▪ Runs the analyzer, outputs text report

▪ $  clang --analyze -Xclang -analyzer-output=html -o <output-dir> div0.c

▪ Runs the analyzer on div0.c, outputs an HTML formatted “chain of reasoning” to the 
output directory.

▪ cd to <output-dir>, firefox report* &



Using the Clang Static Analyzer – Example 2

▪ Basic example …. 

▪ $  scan-build -V clang -c div0.c

▪ Runs the analyzer on div0.c, brings up an HTML report



Clang Static Analyzer – Example 1

void f6(int x) {

int a[4];

if (x==5) {

if (a[x] == 123) {}

}

}

$ clang --analyze -Xclang -analyzer-output=html -o somedir check.c

check.c:6:18: warning: The left operand of '==' is a garbage value due to array index out of bounds [core.UndefinedBinaryOperatorResult]

if (a[x] == 123) {}

~~~~ ^

1 warning generated.

▪ Intra procedural

▪ Array index out of bounds.

Clang Static Analyzer – Example 2

1:

2: int foobar() {

3: int i;

4: int *p = &i;

5: return *p;

6: }

▪ Intra procedural

▪ ‘i’ declared without an initial value

▪ ‘*p’, undefined or garbage value

Clang Static Analyzer – Example 3

1:
2: #include <stdlib.h>
3:
4: int process(void *ptr, int cond) {
5: if (cond)
6: free(ptr);
7: }
8:
9: int entry(size_t sz, int cond) {

10: void *ptr = malloc(sz);
11: if (ptr)
12: process(ptr, cond);
13:
14: return 0;
15: }

▪ Analysis spans functions – said to be
“inter-procedural”

▪ A Memory leak!

What about analyzing calls to external functions?

▪ These examples were single translation unit only.

▪ In other words, in the same, single source file – “inter-procedural”, or inside of a
single translation unit

▪ What if a function calls another function outside of it’s translation unit?

▪ Referred to as “Cross translation Unit”

▪ Examples …

Cross Translation Unit Analysis

▪ CTU gives the analyzer a view across translation units

▪ Avoids false positives caused by lack of information

▪ Helps the analyzer constrain variables during analysis

int foo();

int main() {

return 3/foo();

}

int foo() {

return 0;

}

foo() is not known to

be 0 without CTU

Main.cpp Foo.cpp

How does CTU work?

CTU

Build

Call

Graph

Function

index

AST

Dumps

Analyzer
Analysis

results

Source code and JSON Compilation Database

Pass 1 Pass 2

compile_commands.json

Manual CTU – compile_commands.json

[

{

"directory": “<root>/examples/ctu",

"command": "clang++ -c foo.cpp -o foo.o",

"file": "foo.cpp"

},

{

"directory": “<root>/examples/ctu",

"command": "clang++ -c main.cpp -o main.o",

"file": "main.cpp"

}

]

▪ Mappings implicitly use the compile_commands.json file

▪ Analysis phase uses compile_command.json to locate the source files.

Source: https://clang.llvm.org/docs/analyzer/user-docs/CrossTranslationUnit.html

Manual CTU - Demo

Generate the AST (or the PCH)

clang++ -emit-ast -o foo.cpp.ast foo.cpp

Generate the CTU Index file, holds external defs info

clang-extdef-mapping -p . foo.cpp > externalDefMap.txt

Fixup for cpp -> ast, use relative paths

sed -i -e "s/.cpp/.cpp.ast/g" externalDefMap.txt

sed -i -e "s|$(pwd)/||g" externalDefMap.txt

Do the analysis

clang++ --analyze \

-Xclang -analyzer-config -Xclang experimental-enable-naive-ctu-analysis=true \

-Xclang -analyzer-config -Xclang ctu-dir=. \

-Xclang -analyzer-output=plist-multi-file \

main.cpp

Using Cross Translation Unit Analysis

▪ scan-build.py within Clang can be used to drive Static Analysis on projects, scan-
build is not actively maintained for Cross Translation Unit Analysis.

▪ Ericsson’s Open Source CodeChecker tool supports CTU flows

▪ Let’s see an example …

CodeChecker automates this process

Create a compile.json

CodeChecker log –b “clang main.cpp foo.cpp” –o compile.json

First, try without CTU

CodeChecker analyze –e default –clean compile.json –o result

CodeChecker parse result

Add CTU

CodeChecker analyze –e default –ctu –clean compile.json –o result

CodeChecker parse result

try with scan build

scan-build clang main.cpp foo.cpp

Benefits of CTU

▪ 2.4x Average

▪ 2.1x median

▪ 5x peak

▪ Note there are some lost
defects when using CTU

See https://llvm.org/devmtg/2017-03//assets/slides/cross_translation_unit_analysis_in_clang_static_analyzer.pdf ,

https://www.youtube.com/watch?v=7AWgaqvFsgs

https://llvm.org/devmtg/2017-03/assets/slides/cross_translation_unit_analysis_in_clang_static_analyzer.pdf
https://www.youtube.com/watch?v=7AWgaqvFsgs

CSA Modeling Weaknesses

▪ CSA does a good job modeling program execution, but does have some
weaknesses.

▪ CSA is built for speed, and common cases. The constraint solver gives up on some
complex expressions when they appear with symbolic values.

▪ An example …

Example of unhandled bitwise operations

▪ This program is safe, albeit brittle

1: unsigned int func(unsigned int a) {

2: unsigned int *z = 0;

3: if ((a & 1) && ((a & 1) ^1))

4: return *z; // unreachable

5: return 0;

6: }

$ clang --analyze test.cpp

test.cpp:5:16: warning: Dereference of null pointer (loaded from variable 'z') [core.NullDereference]

return *z;

^~

1 warning generated.

$ clang --analyze -Xclang -analyzer-config -Xclang crosscheck-with-z3=true test.cpp

$ clang --analyze -Xclang -analyzer-constraints=z3 func.c

Z3 Refutation, preferred

Z3 constraint manager, slower

Source: Refuting false bugs in the clang static analyzer, Gadelha… https://www.youtube.com/watch?v=SO84AmbWiLA

https://www.youtube.com/watch?v=SO84AmbWiLA

Refuting False Positives with Z3

▪ CSA sometimes detects false positives because of limitations in the CSA
constraint manager.

▪ Speed comes at the expense of precision -- symbolic analysis does not handle
some arithmetic and bitwise operations. Z3 can compensate for some of these
shortcoming.

▪ CodeChecker enables Z3 by default, if found.

▪ See https://github.com/Z3Prover/z3. Clang can be compiled to use Z3.

https://github.com/Z3Prover/z3

Why not just replace the CSA solver?

▪ First SMT backend solver (Z3) implemented in late 2017. It aimed to replace the
CSA constraint solver.

▪ This solver was 20 times slower than the built in solver.

▪ A refutation approach gives us best of both worlds

▪ Clang Static Analyzer’s Speed for common cases

▪ A chance for a Z3 solver to refute bugs

▪ So, this is the approach for now

Putting it all together …

▪ How do we use everything we’ve learned to find some real bugs?

▪ Using LLVM/Clang “tip of tree”, compiled with Z3 “tip of tree”

▪ Let’s look at the “bitcoin curve” library https://github.com/bitcoin-core/secp256k1.git.

▪ It’s small enough to demonstrate, and does have some bugs CSA can find

▪ I’ll demonstrate how to run Static Analysis on this code, and the differences in analysis
results using Z3 and Cross Translation Unit Analysis

▪ I’ll also demonstrate using Clang Static Analyzer on a well developed project, gzip

https://github.com/bitcoin-core/secp256k1.git

Results & Conclusion

▪ We found some real bugs in the “bit coin curve” library.

▪ Demonstrated how more bugs can be found, or refuted, using CTU and Z3

▪ Shown you how to make use of Clang tools to find real bugs

References

• Using scan-build https://clang-analyzer.llvm.org/scan-build.html

• Cross Translation Unit Analysis https://clang.llvm.org/docs/analyzer/user-docs/CrossTranslationUnit.html

• CodeChecker https://github.com/Ericsson/codechecker

• Z3 Refutation in Clang - https://arxiv.org/pdf/1810.12041.pdf

• Implementation of CTU in Clang - https://dl.acm.org/doi/pdf/10.1145/3183440.3195041

• https://llvm.org/devmtg/2017-03//assets/slides/cross_translation_unit_analysis_in_clang_static_analyzer.pdf

• SMT based refutation of spurious bug reports in CSA - https://www.youtube.com/watch?v=WxzC_kprgP0

• “Bit coin curve” library - https://github.com/bitcoin-core/secp256k1.git
• Compile command JSON Specification https://clang.llvm.org/docs/JSONCompilationDatabase.html

• Z3 https://github.com/Z3Prover/z3

• Tutorial Source - https://github.com/vabridgers/LLVM-Virtual-Tutorial-2020.git

https://clang-analyzer.llvm.org/scan-build.html
https://clang.llvm.org/docs/analyzer/user-docs/CrossTranslationUnit.html
https://github.com/Ericsson/codechecker
https://arxiv.org/pdf/1810.12041.pdf
https://dl.acm.org/doi/pdf/10.1145/3183440.3195041
https://llvm.org/devmtg/2017-03/assets/slides/cross_translation_unit_analysis_in_clang_static_analyzer.pdf
https://www.youtube.com/watch?v=WxzC_kprgP0
https://github.com/bitcoin-core/secp256k1.git
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://github.com/Z3Prover/z3
https://github.com/vabridgers/LLVM-Virtual-Tutorial-2020.git

Thank you for attending!

Demo notes

• git clone https://github.com/Z3Prover/z3.git
• cd z3; mkdir build; cd build
• cmake -G Ninja ../ ; ninja ; sudo ninja install # assumes installed at /usr/local/lib/libz3.so
• CodeChecker pulled/installed from https://github.com/Ericsson/CodeChecker.git

• Be sure to set “CC_ANALYZERS_FROM_PATH=1”, set PATH to your clang
• Bit coin curve library git clone https://github.com/bitcoin-core/secp256k1.git
• Gzip https://git.savannah.gnu.org/git/gzip.git

• Run scan-build -> “scan-build make”
• CodeChecker command notes …

• CodeChecker log –b “make” –o compile_commands.json
• CodeChecker analyze –e default –clean –j 16 compile_commands.json –o outputdir
• CodeChecker analyze –e default –ctu –clean –j 16 compile_commands.json –o outputdir
• CodeChecker analyze –e default –ctu –z3-refutation off –clean –j 16 compile_commands.json –o outputdir
• CodeChecker parse –e html –o html-output-dir outputdir

https://github.com/Z3Prover/z3.git
https://github.com/Ericsson/CodeChecker.git
https://github.com/bitcoin-core/secp256k1.git
https://git.savannah.gnu.org/git/gzip.git

