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What is Falcon?

• JIT compiler for Java based on LLVM


• Java bytecode => native


• Inside of a running JVM


• Final tier compiler in Azul’s Zing JVM


• Compiles only the hottest methods


• Focus on performance



What is Falcon?
If you want to learn more

• LLVM Dev Meeting 15 - LLVM for a managed language: what we’ve learned 
https://llvm.org/devmtg/2015-10/#talk14


• LLVM Dev Meeting 17 - Falcon: An optimizing Java JIT 
https://llvm.org/devmtg/2017-10/#talk12


• EuroLLVM 17 - Expressing high level optimizations within LLVM 
http://llvm.org/devmtg/2017-03//2017/02/20/accepted-sessions.html#10


• EuroLLVM 18 - New PM: taming a custom pipeline of Falcon JIT 
https://llvm.org/devmtg/2018-04/talks.html#Talk_13

https://llvm.org/devmtg/2015-10/#talk14
https://llvm.org/devmtg/2017-10/#talk12
http://llvm.org/devmtg/2017-03//2017/02/20/accepted-sessions.html#10
https://llvm.org/devmtg/2018-04/talks.html#Talk_13
https://llvm.org/devmtg/2015-10/#talk14
https://llvm.org/devmtg/2017-10/#talk12
http://llvm.org/devmtg/2017-03//2017/02/20/accepted-sessions.html#10
https://llvm.org/devmtg/2018-04/talks.html#Talk_13


What is escape analysis?

• Pointer analysis to determine dynamic scope of pointers & objects


• Whether an object or a pointer is accessible outside the scope of the current 
function or thread?


• This information enables various optimizations


• E.g. a lock can be eliminated if the lock object is not accessible outside of 
one thread



Escape analysis for Java
Why is it important?

• Java doesn't have value types other than builtin primitive types


• Any record-like type is heap allocated by default


• As a result, idiomatic Java code has a lot of short lived allocations


• These allocations often don’t escape the thread or the method


• This opens opportunities for optimizations!



Escape analysis for Java
Typical applications

• Optimize storage for unescaped allocations


• Scalar replacement, e.g. [1]


• Stack allocation, e.g. [2]


• Downgrade of thread safe operations


• Lock elision [1, 2], atomics, etc

[1] "Escape analysis in the context of dynamic compilation and deoptimization." (Kotzmann, 
Mössenböck 2005) 
[2] "Stack allocation and synchronization optimizations for Java using escape analysis." (Choi, Gupta, 
et al. 2003)

https://dl.acm.org/doi/abs/10.1145/1064979.1064996
https://dl.acm.org/doi/abs/10.1145/1064979.1064996
https://dl.acm.org/doi/abs/10.1145/1064979.1064996
https://dl.acm.org/doi/abs/10.1145/945885.945892
https://dl.acm.org/doi/abs/10.1145/945885.945892
https://dl.acm.org/doi/abs/10.1145/945885.945892
https://dl.acm.org/doi/abs/10.1145/1064979.1064996
https://dl.acm.org/doi/abs/10.1145/1064979.1064996
https://dl.acm.org/doi/abs/10.1145/1064979.1064996
https://dl.acm.org/doi/abs/10.1145/945885.945892
https://dl.acm.org/doi/abs/10.1145/945885.945892
https://dl.acm.org/doi/abs/10.1145/945885.945892


Escape related facts
What do we need for different optimizations?

• Different optimizations need different facts


• For example:


• Constant fold comparisons involving new allocation — can the pointer be 
inspected outside of the function? 


• Optimize allocation storage — can the contents of the object be inspected 
outside of the function?


• Downgrade atomics — can the contents of the object be inspected outside 
of the thread?



Pointer value can’t be inspected outside of the function scope


=>


Contents of the object can’t be inspected outside of the function scope


 =>


Contents of the object can’t be inspected outside of the thread



Pointer value can’t be inspected outside of the function scope


=>


Contents of the object can’t be inspected outside of the function scope


 =>


Contents of the object can’t be inspected outside of the thread

Compute the stronger fact and assume weaker facts from it



Pointer value can’t be inspected outside of the function scope 

We will call this property “no escape” or “no capture” 
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CaptureTracking analysis in LLVM

Can bits of the pointer be inspected outside of the function scope?

bool llvm::PointerMayBeCaptured(const Value *V, 
                                bool ReturnCaptures,  
                                bool StoreCaptures, 
                                unsigned MaxUsesToExplore)



CaptureTracking analysis in LLVM
How does it work?

• Analyze uses of the pointer


• Each use either


• Captures — e.g. pointer is stored into a global


• Doesn’t capture — e.g. pointer is passed as an nocapture argument 


• Produces an alias — need to analyze uses of the alias as well 


• E.g. getelementptr, bitcast, addrspacecast



Users of CaptureTracking in LLVM

• Used either via BasicAliasAnalysis


• GVN, EarlyCSE, LICM, DSE, etc


• Or directly


• LICM, InstSimplify, ThreadSanitizer, etc


• Often used as a conservative approximation of weaker facts



EA optimizations in Falcon

• Initial implementation of EA-based optimizations used CaptureTracking


• Identified a few limitations


• Handling of unescaped object graphs 


• Limited control-flow sensitivity


• Compile time impact


• Eventually had to build our own analysis



a = new A 
b = new B 
; Doesn’t capture! 
a.field = b       
; Can be eliminated! 
monitor_enter(b)  
b.value = 5 
; Can be eliminated! 
monitor_exit(b) 

Handling of unescaped graphs

• CaptureTracking considers any 
store as capture


• In fact a store to unescaped 
memory doesn’t escape or 
capture


• This is an unused StoreCapture 
parameter and >10 year old 
TODO

What is missing in CaptureTracking?



Handling of unescaped graphs

• Can work around some cases by 
iterative optimizations


• E.g. scalarize leaf allocation a 
first

What is missing in CaptureTracking?

b = new B 
; Not a store anymore! 
a_field = b       
; Can be eliminated! 
monitor_enter(b)  
b.value = 5 
; Can be eliminated! 
monitor_exit(b) 



Handling of unescaped graphs

• Doesn’t work if there are cycles 
in unescaped object graphs


• Doubly-linked list kind of 
structures


• Unfortunately, appears in the 
standard library in Java :(

What is missing in CaptureTracking?

a = new A 
b = new B 
; Doesn’t capture! 
a.field = b 
; Doesn’t capture! 
b.field = a 
; Can be eliminated! 
monitor_enter(b) 
b.value = 5 
; Can be eliminated! 
monitor_exit(b)



What is missing in CaptureTracking?
Limited control-flow sensitivity

• Even if the allocation escapes we want to optimize the code before escape


• E.g. thread safe initialization before escape, 


• or slow-path escapes


• CaptureTracking has limited control flow sensitivity


• Prune uses which are not relevant for the given context in the function


• Conservatively using DominatorTree and isPotentiallyReachableFrom


• Often too conservative



What is missing in CaptureTracking?
Compile time impact

• CaptureTracking is a non-caching analysis


• Scanning allocation uses on every query


• As a mitigation has a cutoff on the maximum number of uses to scan


• 20 by default


• We have seen unescaped allocations with thousands of uses 
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Falcon’s FlowSensitiveEA

• Flow-sensitive analysis which models points-to graph of unescaped object by 
abstract interpretation


• Tracked state is points-to graph of unescaped allocations


• Traverse CFG in reverse-post order


• Scan through instructions modeling their effects on the tracked state


• Similar to [1] but intentionally separate analysis and transformations 

[1] “Partial escape analysis and scalar replacement for Java" (Stadler, Würthinger, Mössenböck 2014)

https://dl.acm.org/doi/abs/10.1145/2544137.2544157
https://dl.acm.org/doi/abs/10.1145/2544137.2544157


Falcon’s FlowSensitiveEA

• Downstream analysis and transformations


• Relies on some of the downstream concepts


• Potentially can be upstreamed with some work



Tracked allocations

Keep track of allocations which 
haven't yet escaped

State tracking
; empty state 
a = new A 
; alloc: %a, type=A 
b = new B 
; alloc: %a, type=A 
; alloc: %b, type=B 
escape(a) 
; alloc: %b, type=B 
escape(b) 
; empty state



Tracked allocations
State tracking

; empty state 
a = new A 
; alloc: %a, type=A 
b = new B 
; alloc: %a, type=A 
; alloc: %b, type=B 
escape(a) 
; alloc: %b, type=B 
escape(b) 
; empty state

Keep track of allocations which 
haven't yet escaped



Tracked allocations
State tracking

; empty state 
a = new A 
; alloc: %a, type=A 
b = new B 
; alloc: %a, type=A 
; alloc: %b, type=B 
escape(a) 
; alloc: %b, type=B 
escape(b) 
; empty state

Keep track of allocations which 
haven't yet escaped



Tracked pointers
State tracking

a = new A 
; alloc: %a, type=A 
a.8 = getelementptr a, 8 
; alloc: %a, type=A 
; alias: %a.8 - %a +8 
a.8.i32 = bitcast a.8 to i32* 
; alloc: %a, type=A 
; alias: %a.8 - %a +8 
; alias: %a.8.i32 - %a +8

• Keep track of all pointers to 
tracked allocations


• Including derived pointers



Tracked pointers

• Keep track of all pointers to 
tracked allocations


• Including derived pointers

State tracking

a = new A 
; alloc: %a, type=A 
a.8 = getelementptr a, 8 
; alloc: %a, type=A 
; alias: %a.8 - %a +8 
a.8.i32 = bitcast a.8 to i32* 
; alloc: %a, type=A 
; alias: %a.8 - %a +8 
; alias: %a.8.i32 - %a +8



Points-to graph

• Tracked pointers can be stored 
in unescaped objects


• Need to track these pointers


• For example:


• Object can escape if the 
holder object escapes

State tracking
a = new A 
; alloc: %a, type=A 
b = new B 
; alloc: %a, type=A 
; alloc: %b, type=B 
a.field = b ; b doesn't escape 
; alloc: %a, type=A 
; field = %b 
; alloc: %b, type=B 
escape(a);  
; both a and b escaped



Points-to graph

• Tracked pointers can be stored 
in unescaped objects


• Need to track these pointers


• For example:


• Object can escape if the 
holder object escapes

State tracking
a = new A 
; alloc: %a, type=A 
b = new B 
; alloc: %a, type=A 
; alloc: %b, type=B 
a.field = b ; b doesn't escape 
; alloc: %a, type=A 
; field = %b 
; alloc: %b, type=B 
escape(a);  
; both a and b escaped



Points-to graph
State tracking

a = new A 
; alloc: %a, type=A 
b = new B 
; alloc: %a, type=A 
; alloc: %b, type=B 
a.field = b 
; alloc: %a, type=A 
; field = %b 
; alloc: %b, type=B 
b' = a.field 
; alloc: %a, type=A 
; field = %b 
; alloc: %b, type=B 
; alias: %b'

• Tracked pointers can be stored 
in unescaped objects


• Need to track these pointers


• For example:


• Load from an unescaped 
object might be an alias to 
another allocation



Points-to graph
State tracking

a = new A 
; alloc: %a, type=A 
b = new B 
; alloc: %a, type=A 
; alloc: %b, type=B 
a.field = b 
; alloc: %a, type=A 
; field = %b 
; alloc: %b, type=B 
b' = a.field 
; alloc: %a, type=A 
; field = %b 
; alloc: %b, type=B 
; alias: %b'

• Tracked pointers can be stored 
in unescaped objects


• Need to track these pointers


• For example:


• Load from an unescaped 
object might be an alias to 
another allocation



Allocation state
State tracking

a = new A 
; alloc: %a, type=A 
a.field = b 
; alloc: %a, type=A 
; field = %b 
a.int = 5 
; alloc: %a, type=A 
; field = %b 
; int = 5

For escape analysis we only need 
pointer fields, but our 
implementation tracks all fields



Example
Compute block out states

a = new A 
b = new B 
; alloc: %a, type=A 
; alloc: %b, type=B 

a.f = 4 
escape(b) 
; escaped allocation %b 
; alloc: %a, type=A 
; f = 4 

a.f = 5 
; alloc: %a, type=A 
; f = 5 
; alloc: %b, type=B



Merge incoming states
Example

a.f = 4 
escape(b) 
; escaped allocation %b 
; alloc: %a, type=A 
; f = 4 

a.f = 5 
; alloc: %a, type=A 
; f = 5 
; alloc: %b, type=B

?



Merge incoming states

Take an intersection of tracked allocations across all incoming paths





If there is a path where an allocation escaped — the allocation is escaped in the 
merge state as well

MergedState . TrackedAllocations = ⋃
S∈IncomingStates

S . TrackedAllocations



Merge incoming states
For every allocation in the intersection

• Compute tracked pointers





• Produce merged allocation state 


• For every field in the allocation produce a value describing merged field value


• If different values come from different paths produce a (virtual) PHI value


• Don’t materialize PHINodes in the IR during analysis

MergedState . TrackedPointers = ⋂
S∈IncomingStates

S . TrackedPointers



Merge incoming states
Example

a.f = 4 
escape(b) 
; escaped allocation %b 
; alloc: %a, type=A 
; f = 4 

a.f = 5 
; alloc: %a, type=A 
; f = 5 
; alloc: %b, type=B

; escaped allocation %b 
; alloc: %a, type=A 
; f = vphi 5, 4 



• If there is a cycle the back edge 
state will be unknown


• Perform optimistic merge


• Assume the back edge doesn’t 
affect the merged state


• Once the back edge state is 
available re-evaluate the merge


• The tracked state is supposed to be 
a lattice, so the iteration eventually 
converges

Handling CFG cycles
a = new A 
; alloc: %a, type=A  

a.f = 1



• If there is a cycle the back edge 
state will be unknown


• Perform optimistic merge


• Assume the back edge doesn’t 
affect the merged state


• Once the back edge state is 
available re-evaluate the merge


• The tracked state is supposed to be 
a lattice, so the iteration eventually 
converges

Handling CFG cycles
a = new A 
; alloc: %a, type=A  

; alloc: %a, type=A 
a.f = 1 
; alloc: %a, type=A 
; f = 1



• If there is a cycle the back edge 
state will be unknown


• Perform optimistic merge


• Assume the back edge doesn’t 
affect the merged state


• Once the back edge state is 
available re-evaluate the merge


• The tracked state is supposed to be 
a lattice, so the iteration eventually 
converges

Handling CFG cycles
a = new A 
; alloc: %a, type=A  

; alloc: %a, type=A 
; f = vphi 0, 1 
a.f = 1 
; alloc: %a, type=A 
; f = 1
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Analysis invalidation/update

• Analysis maintains non-trivial state


• Allocations with all of their fields


• Currently doesn’t support updates as the IR is transformed


• Usually it’s hard to get it right



Analysis invalidation/update

• Instead we collect the transformations based on EA and then apply


1. Build EA


2. Collect transforms


3. Discard EA


4. Apply transforms


• Only care about update/invalidation of individual transforms


• ValueHandles do the job



FlowSensitiveEA users

• Currently is organized as a single pass which does various transforms using the 
analysis


• Scalar replacement as a series of transforms like


• Store-load forwarding for unescapes objects


• Constant folding of comparisons 


• Dematerialization in deopt states 


• Downgrade of thread safe operations - e.g. locks/atomics


• Dead store elimination for unescaped objects



Integrate with AliasAnalysis

• We have ad-hoc transforms for unescapes allocations


• Store-load forwarding, dead store elimination, etc


• LLVM already has these optimizations, we just need to feed the results of the 
analysis to the existing transforms


• It’s hard because we need to solve update/invalidation problem
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• If an allocation doesn’t escape 
we want to 


• Scalarize its fields


• Eliminate the allocation

Scalar replacement

a = new A 
a.f = 5 
b = foo() 
x = a.f 
if (a == b) ...



Rewrite allocation uses

• Store-load forwarding to 
scalarize the fields

Scalar replacement

a = new A 
a.f = 5 
b = foo() 
; alloc: %a, type=A 
; f = 5 
x = a.f 
if (a == b) ...



Rewrite allocation uses

• Store-load forwarding to 
scalarize the fields

Scalar replacement

a = new A 
a.f = 5 
b = foo() 
x = 5 
if (a == b) ...



Rewrite allocation uses

• Store-load forwarding to 
scalarize the fields


• Note: this can also be done by 
EarlyCSE/GVN


• But they don’t benefit from flow-
sensitive EA facts, so are less 
powerful

Scalar replacement

a = new A 
a.f = 5 
b = foo() 
x = 5 
if (a == b) ...



Rewrite allocation uses

• Constant fold comparisons of 
unescapes pointers

Scalar replacement

a = new A 
a.f = 5 
b = foo() 
x = 5 
; alloc: %a, type=A 
; f = 5 
if (a == b) ...



Rewrite allocation uses

• Constant fold comparisons of 
unescapes pointers

Scalar replacement

a = new A 
a.f = 5 
b = foo() 
x = 5 
if (false) ...



Rewrite allocation uses

• Constant fold comparisons of 
unescapes pointers


• Note: this can also be done by 
InstSimplify


• But again, it doesn’t have access 
to EA facts

Scalar replacement

a = new A 
a.f = 5 
b = foo() 
x = 5 
if (false) ...



Rewrite allocation uses

Are we done yet?

Scalar replacement

a = new A 
a.f = 5 
b = foo() 
x = 5 
if (false) ...



Rewrite allocation uses

Deopt bundle use prevents 
elimination of the allocation!  

Scalar replacement

a = new A 
a.f = 5 
b = foo() [ deopt(a) ] 
x = 5 
if (false) ...



Deoptimizations
Side note

• Falcon uses speculative assumptions about the world to optimize the code


• E.g. constant fold a load from a global field assuming it will never change


• We rely on runtime to check and invalidate the assumptions 


• If any of the assumptions is invalidated the compiled code is no longer 
correct and should be deoptimized 

• If we are currently executing the code the execution is resumed in the 
interpreter



Side note

• Any call can invalidate some of 
the speculative assumptions of 
the caller


• In this case we can’t resume 
execution of the compiler code 
on return


• Instead jump to runtime to 
deoptimize and resume 
execution in the interpreter

Deoptimizations

b = invoke foo()

normal  
return 

unwind  
return 

deoptimize  
return 



Side note

• Deopt state contains the values 
describing the abstract state to 
resume execution from


• Interpreter expression stack, 
locals, etc.


• Only used if deoptimization 
occurs


=> doesn’t caputre/escape

Deoptimizations

normal  
return 

unwind  
return 

deoptimize  
return 

b = invoke foo() [ deopt(a) ]



Dematerialization

• Replace the allocation value with 
symbolic description on how to 
materialize the same allocation 
on deopt path [1]


• Effectively sinking the allocation 
into deoptimization path

Scalar replacement

a = new A 
a.f = 5 
b = foo() [ deopt(a) ] 
x = 5 
if (false) ...

[1] "Run-time support for optimizations based on escape analysis." (Kotzmann, Mössenböck 2007)

https://ieeexplore.ieee.org/abstract/document/4145104
https://ieeexplore.ieee.org/abstract/document/4145104


Dematerialization

• Use allocation state to produce 
symbolic descrption


• We know the exact state of the 
allocation, i.e. we know values 
for all fields 

Scalar replacement

a = new A 
a.f = 5 
; alloc: %a, type=A 
; f = 5 
b = foo() [ deopt(a) ] 
x = 5



Dematerialization

• Use allocation state to produce 
symbolic descrption


• We know the exact state of the 
allocation, i.e. we know values 
for all fields 

Scalar replacement

a = new A 
a.f = 5 
; alloc: %a, type=A 
; f = 5 
b = foo() [  
  lazy_object #1 {new A(), f=5}, 
  deopt(#1) ] 
x = 5



Eliminate unused allocations

• Now the allocation becomes 
removable


• Has only initializing uses

Scalar replacement

a = new A 
a.f = 5 
b = foo() [  
  lazy_object #1 {new A(), f=5}, 
  deopt(#1) ] 
x = 5



Eliminate unused allocations

• Now the allocation becomes 
removable


• Has only initializing uses

Scalar replacement

b = foo() [  
  lazy_object #1 {new A(), f=5}, 
  deopt(#1) ] 
x = 5
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• Newly allocated unescaped 
linked-list-like structure


• While loop iterating over the 
structure


• This loop is non-analyzable!

EA-driven loop unroll node3 = new ListNode() 
node3.f = 3 
node3.next = null 
node2 = new ListNode() 
node2.f = 2 
node2.next = node3 
node1 = new ListNode() 
node1.f = 1 
node1.next = node2 

summ = 0 
current = node3 
while (current != null) { 
  summ += current.f 
  current = current.next 
}



EA-driven loop unroll
; alloc: %node3, type=ListNode 
; next = %node2 
; alloc: %node2, type=ListNode 
; next = %node1 
; alloc: %node1, type=ListNode 
; next = null 

summ = 0 
current = node3 
while (current != null) { 
  summ += current 
  current = current.next 
}

• FlowSensitiveEA effectively 
models the object graph for this 
structure


• This model can be used to 
rewrite the loop


• And make it analyzable/
unrollable



; alloc: %node3, type=ListNode 
; next = %node2 
; alloc: %node2, type=ListNode 
; next = %node1 
; alloc: %node1, type=ListNode 
; next = null 

loop: 
  %curr = phi [%node3, %incoming], [%next, %backedge] 
  %cont = icmp eq, %curr, null 
  br %cont, %exit, %cont 

cont: 
  ... 
  %next = load %curr.next 
  br %loop 
  
exit:



; alloc: %node3, type=ListNode 
; next = %node2 
; alloc: %node2, type=ListNode 
; next = %node1 
; alloc: %node1, type=ListNode 
; next = null 

loop: 
  %curr = phi [%node3, %incoming], [%next, %backedge] 
  %cont = icmp eq, %curr, null 
  br %cont, %exit, %cont 

cont: 
  ... 
  %next = load %curr.next 
  br %loop 
  
exit:

Identify iteration over 
linked-list-like structure



loop: 
  %curr = phi [%node3, %incoming], [%next, %backedge] 
  %cont = icmp eq, %curr, null 
  br %cont, %exit, %cont 

cont: 
  ... 
  %next = load %curr.next 
  br %loop 
  
exit:

next=%node2 

%node3

next=%node1 next=null

%node2 %node1



loop: 
  %curr = phi [%node3, %incoming], [%next, %backedge] 
  %canonical.iv = phi [0, %incoming], [%iv.next, %backedge]  
  %cont = icmp eq, %canonical.iv, 3 
  br %cont, %exit, %cont 

cont: 
  ... 
  %iv.next = add %canonical.iv, 1 
  %next = load %curr.next 
  br %loop 
  
exit:

next=%node2 

%node3

next=%node1 next=null

%node2 %node1

Insert canonical IV 

Rewrite the exit in term of 
the canonical IV 

  
Now the loop exit is analyzable!



• The loop is now analyzable and 
unrollable

EA-driven loop unroll
node3 = new ListNode() 
node3.f = 3 
node3.next = null 
node2 = new ListNode() 
node2.f = 2 
node2.next = node3 
node1 = new ListNode() 
node1.f = 1 
node1.next = node2 
summ = 0 
; Unrolled loop 
summ += node3.f 
summ += node2.f 
summ += node1.f



• The loop is now analyzable and 
unrollable


• After unrolling store-load 
forwarding kicks in

EA-driven loop unroll
node3 = new ListNode() 
node3.f = 3 
node3.next = null 
node2 = new ListNode() 
node2.f = 2 
node2.next = node3 
node1 = new ListNode() 
node1.f = 1 
node1.next = node2 
summ = 0 
; Unrolled loop 
summ += node3.f 
summ += node2.f 
summ += node1.f



• The loop is now analyzable and 
unrollable


• After unrolling store-load 
forwarding kicks in

EA-driven loop unroll
node3 = new ListNode() 
node3.f = 3 
node3.next = null 
node2 = new ListNode() 
node2.f = 2 
node2.next = node3 
node1 = new ListNode() 
node1.f = 1 
node1.next = node2 
summ = 0 
; Unrolled loop 
summ += 3 
summ += 2 
summ += 1



• The loop is now analyzable and 
unrollable


• After unrolling store-load 
forwarding kicks in 


• The allocations become 
removable

EA-driven loop unroll

node3 = new ListNode() 
node3.f = 3 
node3.next = null 
node2 = new ListNode() 
node2.f = 2 
node2.next = node3 
node1 = new ListNode() 
node1.f = 1 
node1.next = node2 
summ = 6



• The loop is now analyzable and 
unrollable


• After unrolling store-load 
forwarding kicks in 


• The allocations become 
removable

EA-driven loop unroll

summ = 6
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Performance results

• Compare default (with FlowSensitiveEA enabled) with


• Disabled allocation state tracking (no points-to graph) 


• Object graphs are still handled by iterative optimization


• Disabled FlowSensitiveEA pass



-100

-75

-50

-25

0

25

50

FlowSensitiveEA disabled 
46/234 regression >5% 

(19% of all tests) 
-16.4% geomean

No allocation state tracking 
36/234 regression >5% 

(15% of all tests) 
-3.6% geomean

SpecJVM 2008, SpecJBB 2015, Dacapo, Renaissance and others
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-45

-22.5

0

22.5

45

FlowSensitiveEA disabled 
140/240 regression >5% 

(58% of all tests) 
-32.4% geomean

No allocation state tracking 
90/240 regression >5% 

(38% of all tests) 
-19.5% geomean

java.util.stream API benchmarks
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Conclusion

• Java code has a lot of opportunities for EA


• We identified some limitations in CaptureTracking


• E.g. handling of unescaped object graphs


• We implemented downstream analysis and transforms to solve those 
limitations


• As a result observed substantial performance gains


• Integration with existing passes in non-trivial due to update/invalidation 
problem



Questions?


