
Undef and Poison:
Present and Future

Juneyoung Lee
Seoul National University

1

This talk is based on joint work with
Sanjoy Das, Chung-Kil Hur, Nuno P. Lopes, David Majnemer, John Regehr

What is This Talk About?
• LLVM has a notion of undef & poison values.
• Their semantics has been unclear, causing real-world problems.

• Recently, efforts have been made to address the problem.
• I will talk about the background, current status, and future directions.

2

Background

Undefined Behavior,
Undef, and Poison

3

Undefined Behavior

• Behavior of a program that violates the language standard
• Behavioral refinement: Compiler assumes the source has no UB

4

int x;
if (cond) x = 3;
f(x);

movl $3, %edi
call f

false

UB C Asm

Indeterminate
value

Indeterminate
value

Motivation for Undef

5
New LLVM ‘undef’ Value, http://www.nondot.org/sabre/LLVMNotes/UndefinedValue.txt

Problem
IR didn’t have a notion of ‘uninitialized value’

; br cond, ...
x = phi(3,)
call f(x)

IR
int x;
if (cond) x = 3;

f(x);

C

??undef

Undef ≠ Indeterminate Value

• Example: C’s bitfield

6
New LLVM ‘undef’ Value, http://www.nondot.org/sabre/LLVMNotes/UndefinedValue.txt

struct {
int x: 2, y: 6;

} a;
a.x = 1;

a = alloca
b = load a
v = (b & ~3) | 1
store v, a

C IRIndeterminate
value

UB

Definition of Undef
• undef of type T is the set consisting of all defined values of T.
• A (partially) undefined value is a subset of undef.
• An operation on undefined values is defined in element-wise manner

7

struct {
int x: 2, y: 6;

} a;
a.x = 1;

a = alloca i8
b = load i8 a
v = (b & ~3) | 1
store v, a

C IRundef = {0, 1, ..., 255}
8 bits: ********

******00

******01
🙂

The nsw story, https://groups.google.com/g/llvm-dev/c/sDYaYV_ZF-g/m/5Ektu6vM_0oJ

Motivation for Poison

8

int32_t i = 0;
while (i <= y) {

arr[i] = ...;
i = i + 1;

}

int64_t i = 0;
while (i <= y) {
arr[i] = ...;
i = i + 1;

}

IR IR

Needs to
signext i to 64

(expensive)

Problem
Needed a value that represents signed overflow in LLVM IR,

But undef was too weak & UB was too strong.
• Example: Widening an induction variable

No signext
needed
(cheap)

https://groups.google.com/g/llvm-dev/c/sDYaYV_ZF-g/m/5Ektu6vM_0oJ

Motivation for Poison

9

int32_t i = 0;
while (i <= y) {

arr[i] = ...;
i = i + 1;

}

int64_t i = 0;
while (i <= y) {
arr[i] = ...;
i = i + 1;

}

IR IR

• Example: Widening an induction variable

INT32_MAX INT32_MAX

Problem
Needed a value that represents signed overflow in LLVM IR,

But undef was too weak & UB was too strong.

always true can be false

The nsw story, https://groups.google.com/g/llvm-dev/c/sDYaYV_ZF-g/m/5Ektu6vM_0oJ

https://groups.google.com/g/llvm-dev/c/sDYaYV_ZF-g/m/5Ektu6vM_0oJ

Motivation for Poison

10

int32_t i = 0;
while (i <= y) {

arr[i] = ...;
i = i +nsw 1;

}

int64_t i = 0;
while (i <= y) {
arr[i] = ...;
i = i +nsw 1;

}

IR IR

• Example: Widening an induction variable

Problem
Needed a value that represents signed overflow in LLVM IR,

But undef was too weak & UB was too strong.

INT32_MAX ???
1. undef ≤ INT32_MAX is still true
2. Raising UB blocks code motion

The nsw story, https://groups.google.com/g/llvm-dev/c/sDYaYV_ZF-g/m/5Ektu6vM_0oJ

poison!

INT32_MAX

always true

https://groups.google.com/g/llvm-dev/c/sDYaYV_ZF-g/m/5Ektu6vM_0oJ

Definition of Poison

11

• poison is a special value that represents a violation of an assumption
• Each operation either propagates poison or raise UB
• (Property) poison is refined by any (defined or undefined) value

🙂
int32_t i = 0;
while (i <= y) {
arr[i] = ...;
i = i +nsw 1;

}

int64_t i = 0;
while (i <= y) {
arr[i] = ...;
i = i +nsw 1;

}

IR IRpoison

INT32_MAX INT32_MAX+1

false

INT32_MAXpoison

poisonà false is allowed

INT32_MAX

INT32_MAX poison!

12

Comparison of Undef and Poison
1. poison and undef can fold to a different (defined) value at each use

y = load uninit_var
use1(y)
use2(y)

use1(0)
use2(1)

z = INT_MAX < (INT_MAX +nsw 1)
use1(z)
use2(z)

use1(0)
use2(1)

poison

undef

poison

Comparison of Undef and Poison
2. Undefined values do not admit certain arithmetic properties

13

y = x * 2 y = x + x

y = x * 2 y = x + x

?
A. If x is poison: poison

poison

B. If x is undef:

y = x * 2 y = x + x{𝟎, 𝟐, 𝟒, . . }

{𝟎, 𝟏, 𝟐, 𝟑. . }

IR IR

14

y = x + undef y = undef

poisonpoison

x = c ? undef : y x = y

poisontrueundef poison

poison à undef: allowed

undef à poison: disallowed

Comparison of Undef and Poison
3. poison is more undefined than undef

https://reviews.llvm.org/D83360

https://reviews.llvm.org/D83360

15

struct {
int x: 2, y: 6;

} a;
a.x = 1;

a = alloca i8
b = load i8 a
v = (b & ~3) | 1
store v, a

C IR
poison

poison

poison
☹

Comparison of Undef and Poison
4. poison cannot be used for uninitialized bitfields

Summary: UB, Undef, and Poison

• Undefined behavior is the strongest one

• poison is a notion of deferred UB

• Undefined values are sets of values

16

Defined values

Undefined values

UB

Poison values

Least
Defined

Most
Defined

Recent Progresses in
Fixing UB-related Problems in LLVM

17

1. Semantics Are Clarified at LangRef.

18

br undef, A, B

switch undef, ...
UB

z = select poison, x, y 𝒛 = poison

Branch

Ternary Op.

shufflevector’s undef mask, memset(undef, val, 0), padding of aggregates, ...

// MSAN does not like undefs as branch condition which can be introduced
// with "explicit branch".
if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
return false;

https://reviews.llvm.org/D76973 https://reviews.llvm.org/D86189
https://reviews.llvm.org/D70641 https://reviews.llvm.org/D86643

And also

https://reviews.llvm.org/D76973
https://reviews.llvm.org/D86189
https://reviews.llvm.org/D70641
https://reviews.llvm.org/D86643

2. Undef/Poison-related Bugs
Are Found with Alive2

• Alive2 is a translation validation tool for LLVM: https://alive2.llvm.org

• llvm/test/Transforms: 23 bugs reported, 17 fixed, 37 failures remaining

• Project Zero LLVM Bugs: https://web.ist.utl.pt/nuno.lopes/alive2/

19

src.ll

tgt.ll

opt It’s correct / incorrect!

https://alive2.llvm.org/
https://web.ist.utl.pt/nuno.lopes/alive2/

3. Freeze to the Rescue

20

y = x * 2 y = x + x

undef

Definition of “y = freeze x”
• If x is poison or undefined value: return a defined, nondeterministically chosen, value
• Otherwise: return x

{𝟎, 𝟐, 𝟒, . . }

• Officially added to LLVM 10.0

{𝟎, 𝟏, 𝟐, 𝟑. . }

undef

3. Freeze to the Rescue

21

y = x * 2 x’ = freeze x
y = x’ + x’

0

Definition of “y = freeze x”
• If x is poison or undefined value: return a defined, nondeterministically chosen, value
• Otherwise: return x

1 2 ⋯
(Nondeterministically chosen)

0 2 ⋯

• Officially added to LLVM 10.0

(one of even numbers)

undef

{𝟎, 𝟐, 𝟒, . . }

undef

Fixing “Select à Branch” Using Freeze

22

z = select c, x, y

poisonpoison

if (c) z = x
else z = y

poisonUB

z = select c, x, y if (freeze(c)) z = x
else z = y

poisontrue false

https://reviews.llvm.org/D84940
https://reviews.llvm.org/D76179

3. Freeze to the Rescue

https://reviews.llvm.org/D84940
https://reviews.llvm.org/D76179

Fixing DivRemPairs Using Freeze

23

a = x / y
b = x % y

a = x / y
b = x - (a * y)

1undefundef

0

undef 1undef

undefundef

https://reviews.llvm.org/D76483

3. Freeze to the Rescue

1undef undef

https://reviews.llvm.org/D76483

24

a = x / y
b = x % y

x’= freeze x
a = x’ / y
b = x’ - (a * y)

n

n

undef

n

0

In the full patch, y is frozen as well
because giving an undefined value to y causes a bug too.

1

n is a defined value!

Fixing DivRemPairs Using Freeze
3. Freeze to the Rescue

1undefundef

0 1undef

Performance Regression Matters

• There are optimizations/analyses unaware of freeze

• Fixing DivRemPairs: ~2% slowdown in 505.mcf_r with LTO, -O3

• Reason: SCEV wasn’t aware of freeze à LSR disabled

• Solution: added a pass that hoists freeze out of a loop to remove the slowdown

25
https://reviews.llvm.org/D77523

https://reviews.llvm.org/D77523

4. Some Optimizations Were Removed

Folding select with undef operand

• It can be easily fixed with freeze, but simply disabled

26

x = c ? undef : y x = y

https://reviews.llvm.org/D83360
https://reviews.llvm.org/D85684

https://reviews.llvm.org/D83360
https://reviews.llvm.org/D85684

5. Patches Have Landed to Recover
Performance

A. Insert fewer freeze instructions
• ValueTracking::isGuaranteedNotToBeUndefOrPoison

• Library functions (e.g. printf) have noundef at arguments/return values

B. Make optimizations & analyses aware of freeze
• GVN, LICM, EarlyCSE, JumpThreading, ... are aware of freeze

• computeKnownBits, isKnownZero understand freeze

27

https://reviews.llvm.org/D29013
https://reviews.llvm.org/D75808
https://reviews.llvm.org/D85345

https://reviews.llvm.org/D29013
https://reviews.llvm.org/D75808
https://reviews.llvm.org/D85894

Future Directions

28

1. Use Non-Undef/Poison Assumption
From Source Language

• (Ongoing) Attach noundef to function arguments when lowering C to IR

• Passing ill-defined values as function arguments raise UB in C/C++

• Attaching noundef is in progress (mainly by MSan folks)

• (Suggestion) Attach!noundef metadata to instructions

• Certain erroneous operations raise UB in C/C++

• e.g., Signed overflow, OOB pointer, Loading ill-defined values of non-char type

29
https://reviews.llvm.org/D81678

https://reviews.llvm.org/D81678

2. Improve Undef/Poison Analysis

30

@f(i32 %n) {
loop:

%i = phi [0, %entry]
[%i’, %loop]

%i’ = %i +nsw 1
%cmp = %i’ <= %n
br %cmp, loop, exit

}

Q: Is %i’ never undef & poison?

A: Yes!
(1) non-undef: %i’ increments from 0
(2) non-poison: “br %cmp” raises UB

if poison.

poison

UB

poison

poison

poison

3. Make More Optimizations
Freeze-Aware

• Optimizations
• SimplifyCFG, InstCombine, InstSimplify

- Reenable unnecessarily disabled patterns in the presence of freeze.
• Vectorizer

- Update vectorization algorithms to handle freeze

• Analyses
• Freeze makes difference between Must & May Analyses

- Holds for: one of possible values vs. all possible values

31https://reviews.llvm.org/D75808
https://reviews.llvm.org/D87445

https://reviews.llvm.org/D75808
https://reviews.llvm.org/D87445

Non-Undef/Poison Assumption From
Source is Helpful

• Baseline: Fix 16 more bugs by inserting freeze or conditionally enabling it

• Attach noundef to function args & !noundef to value read when lowering from C/C++

• Run SPEC CPU2017 with –O3, count the unremoved freeze insts.

32

SPEC CPU2017 Base Add noundef
to fn args

Add noundef
to fn args & var reads

of freeze insts. 42K 36K (86%) 24K (57%)

of freeze per bench. 49 ~ 95%
(Avg. 77%)

27 ~ 80%
(Avg. 51%)

How to Write Safe Optimizations

1. Keep in mind that input values can be undef or poison

2. Be aware that two uses of the same variable may yield different values

• Ex) x * 2 x + x

3. Be careful not to introduce new undef or poison values

• Ex) (x +nsw y) +nsw z x +nsw (y +nsw z)

33

Making Things Simpler by
Removing undef

• undef is hard to reason about due to partially undefined values

• Alive2 detected >30 miscompilations only caused by undef

• Might be possible to use poison and freeze instead of undef

34
https://bugs.llvm.org/show_bug.cgi?id=33165

https://bugs.llvm.org/show_bug.cgi?id=33165

Summary

1. LLVM has undef and poison values

2. Miscompilations can be fixed with freeze by removing corner cases

3. Cost of using freeze has been reduced over time

4. Suggest removing undef and using poison only

35

