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Evolving “convergent”:
Lessons from Control Flow in AMDGPU



* |R: Add convergence control operand bundle and intrinsics
= https://reviews.llvm.org/D85603

= New control flow implementation in the AMDGPU backend
= https://github.com/nhaehnle/llvm-project/tree/controlflow-wip-v7
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barrier()

“Wait for all other threads in the threadgroup
to reach the same point in the program”
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Barriers and loop unswitching

bool cond = ..;
for (int i = 0; i < 4; ++i) {
if (cond) A{
A(i)
} else {
B(i)
1

barrier();
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bool cond = ..;
if (cond) A

for (int i = 0; i < 4; ++i) {

A(i)
}

barrier();
} else {

for (int i = 0; i < 4; ++i) {

B(i)
}

barrier();
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Barriers and loop unrolling

bool cond = ..;

for (int 1 = 0; 1 < 4; ++i) A —

if (cond) {
A(i)

} else {
B(i)

1

barrier();
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bool cond = ..;

if (cond) { A(O®) }
barrier();

if (cond) { A(1) }
barrier();

if (cond) { A(2) }
barrier();

if (cond) { A(3) }
barrier();

else

else

else

else

{ B(®) }

{ B(1) }

{ B(2) }

{ B(3) }
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From LangRef:

When [convergent] appears on a function, it indicates that calls to this function should not
be made control-dependent on additional values.
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Convergent

u

Ing has issues

flag = true
if (condition)

if (condition)

flag = ..

/

if (flag)

barrier()

/
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flag = ..
if (flag)

barrier()
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SIMT execution: threads mapped onto lanes of SIMD hardware

Control flow graph Lanes of execution Interleaved execution? No reconvergence?

awil
awil
awiL

= LLVM IR should not care about linear temporal orderings

= LLVM IR must care about whether threads are converged or not
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Why LLVM cares: Cross-lane operations

Control flow graph With reconvergence Without reconvergence
bool cond = ..; - !
. 3 3
int value = ..; ® ®
if (cond) {

value = foo();
} else {
value = bar();
+
int sum = subgroupAdd(value); v
v

» subgroupAdd computes sum over all “active” threads that are mapped to the same vector
= Communication with other threads
= Key question: How is the set of communicating threads defined?
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Unstructured loops allow many convergence behaviors

CFG Thread 1 Thread 2 Combined
void fn_continue() { '

// (A)
do {

// (B)
if ()
continue;

// (C)
} white (..);

/% CD)

}

“Dynamic Instances”
(of instructions / basic blocks)
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Unstructured loops allow many convergence behaviors

CFG Thread 1 Thread 2 Combined

void fn_loopnest() {

// (A)
do {
do {

// (B)
} while (..);

// (C)
} while (..);

/% CD)

}

= Same CFG, different expected convergence behavior based on high-level language source

» Loss of information: CFG by itself doesn’t bound convergence behavior at all
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Break blocks

void fn_break() {
// (A)
for (;;) {
// (B)
if () o
// (C)

break;

}

1
fiken (DY
1

Thread 1

Thread 2

Maximal
reconvergence
_|

= \With convergent operations in (C), maximal reconvergence may not be desired
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aL|

Developer
Expectation
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» Functions that internally use convergent operations may or may not “care about” the “active set of threads” with which
they are called

= For subgroupAverage, the set of communicating threads is part of the contract with the caller
= unorderedAppend only requires that all convergent operations communicate among the same set of threads

= \Want a way to express this distinction in IR

float subgroupAverage(float x) { void unorderedAppend(T data) {
return subgroupAdd(x) / uint popcount = subgroupAdd(1);
subgroupAdd(1); uint base;
} if (subgroupElect())

base = atomicAdd(bufferTail, popcount);
uint idx = subgroupBroadcastFirst(base) +
subgroupExclusiveAdd(1);
buffer[idx] = data;
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* Convergent operations communicate with other threads

* The set of communicating threads is the set of threads that executes the same dynamic
instance

= Basic rules:
- Different static instructions - different dynamic instances

- Different executions of the same static instruction by the same thread (e.g. different
loop iterations) = different dynamic instances

- Different threads executing the same static instruction - may be the same dynamic
instance

* Only the dynamic instances of convergent operations are relevant for program behavior
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Spontaneous divergence and reconvergence is generally allowed

Combined
CFG Dynamic Instances

» Additional tools are required to usefully constrain dynamic instances
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Convergence control bundles and intrinsics
" |ntrinsics producing convergence control token values

token @Llvm.experimental.convergence.entry() convergent readnone

token @Llvm.experimental.convergence.loop() [ "convergencectrl"(token) ] convergent
readnone

token @Llvm.experimental.convergence.anchor() convergent readnone

= Convergent operations are controlled

call void @myConvergentOperation() [ "convergencectrl"(token %tok) |

» Fundamental rule:

- Let U be a controlled convergent operation [...] whose convergence token is produced
by an instruction D

= Two threads executing U execute the same dynamic instance of U if and only
if they obtained the token value from the same dynamic instance of D
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Enforcing reconvergence: the simplest case

Control-flow graph Reconvergence No reconvergence

awil
awil
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Enforcing reconvergence: a partial case

Control-flow graph Tight reconvergence Late reconvergence
= —
3 3
D D
\ 4
v

AMDA1
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Enforcing non-reconvergence: break blocks

Maximal Developer

CFG Thread 1 Thread 2 Expectation

void fn_break() {
// (A)
for (;;) {
// (B)
if () o
// (C)
break;

}

}
// (D)

awi]

}
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token convergent readnone
token convergent readnone

» Entry links to the set of threads in the caller
= Dynamic instances of “entry” congruent to dynamic instances of “call” instruction
= Can only appear in a function’s entry block
= Use in subgroupAverage

= Anchor can appear anywhere, provides no guarantees
= Dynamic instances are implementation-defined

= Intention is to capture as many threads as possible while allowing maximum freedom
for optimizations

= Use in unorderedAppend
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Return Of the |00|35 Combined: Combined:
Thread 1 Thread 2 Loop with continue Nested loops

= Contradicts the fundamental rule of controlled convergent operations!
= This is defined to be invalid IR (addition to the IR verifier will flag this)
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Loop hearts

Combined: Combined:
Thread 1 Thread 2 Loop with continue Nested loop

= | oop heart rule: two threads execute the same dynamic instance of a loop heart
if and only if the convergence token was produced by the same dynamic instance
and both threads execute the heart the n'th time with that value (same n)
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Loop hearts

Combined: Combined:
Thread 1 Thread 2 Loop with continue Nested loop

= | oop heart rule: two threads execute the same dynamic instance of a loop heart
if and only if the convergence token was produced by the same dynamic instance
and both threads execute the heart the n'th time with that value (same n)
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= Frontend
C\a(\%?- Insert “convergencectr!” bundles and instructions for [anguages with convergent operations

Do“e- The ConvergenceControlHeuristic pass provides best-effort insertion heuristics
* Transforms
= Generic transforms are conservatively correct if they “don’t move convergent operations across control flow”

DO No general theorem, but that’s what experience suggests so far
= No known cases of spooky action at a distance

= Backend
= Ensure convergence as required by convergence control intrinsics

= Uniform / Divergence analysis
= Uniformity of values can be affected by convergence control intrinsics
= Avalue Vis uniform at a program point P if an appropriately controlled convergent operation in P sees the same
value of V in all communicating threads
10 d0= Want agl API where users of divergence analysis can query the correct convergence control intrinsics / token to be
inserte
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The end

History of “convergent”

Cross-lane operations and examples

Composition

Convergence control intrinsics and rules for dynamic instances

https://reviews.llvm.org/D85603

token @Llvm.experimental.convergence.entry() convergent readnone
token @Llvm.experimental.convergence.loop() [ "convergencectrl"(token) ] convergent

readnone
token @Llvm.experimental.convergence.anchor() convergent readnone

Thank you!
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