AMDZ\

Evolving “convergent”:
Lessons from Control Flow in AMDGPU

* |R: Add convergence control operand bundle and intrinsics
= https://reviews.llvm.org/D85603

= New control flow implementation in the AMDGPU backend
= https://github.com/nhaehnle/llvm-project/tree/controlflow-wip-v7

AMDA1

barrier()

“Wait for all other threads in the threadgroup
to reach the same point in the program”

AMDA1

Barriers and loop unswitching

bool cond = ..;
for (int i = 0; i < 4; ++i) {
if (cond) A{
A(i)
} else {
B(i)
1

barrier();

4 | LLVM 2020 | Evolving “convergent”

bool cond = ..;
if (cond) A

for (int i = 0; i < 4; ++i) {

A(i)
}

barrier();
} else {

for (int i = 0; i < 4; ++i) {

B(i)
}

barrier();

AMDA1

Barriers and loop unrolling

bool cond = ..;

for (int 1 = 0; 1 < 4; ++i) A —

if (cond) {
A(i)

} else {
B(i)

1

barrier();

5 | LLVM 2020 | Evolving “convergen

£

v

bool cond = ..;

if (cond) { A(O®) }
barrier();

if (cond) { A(1) }
barrier();

if (cond) { A(2) }
barrier();

if (cond) { A(3) }
barrier();

else

else

else

else

{ B(®) }

{ B(1) }

{ B(2) }

{ B(3) }

AMDA1

From LangRef:

When [convergent] appears on a function, it indicates that calls to this function should not
be made control-dependent on additional values.

AMDA1

Convergent

u

Ing has issues

flag = true
if (condition)

if (condition)

flag = ..

/

if (flag)

barrier()

/

7 | LLVM 2020 | Evolving “convergent”

flag = ..
if (flag)

barrier()

AMDA1

SIMT execution: threads mapped onto lanes of SIMD hardware

Control flow graph Lanes of execution Interleaved execution? No reconvergence?

awil
awil
awiL

= LLVM IR should not care about linear temporal orderings

= LLVM IR must care about whether threads are converged or not

8 |LLVM 2020 | Evolving “convergent” AMDn

Why LLVM cares: Cross-lane operations

Control flow graph With reconvergence Without reconvergence
bool cond = ..; - !
. 3 3
int value = ..; ® ®
if (cond) {

value = foo();
} else {
value = bar();
+
int sum = subgroupAdd(value); v
v

» subgroupAdd computes sum over all “active” threads that are mapped to the same vector
= Communication with other threads
= Key question: How is the set of communicating threads defined?

9 |LLVM 2020 | Evolving “convergent” AMDn

Unstructured loops allow many convergence behaviors

CFG Thread 1 Thread 2 Combined
void fn_continue() { '

// (A)
do {

// (B)
if ()
continue;

// (C)
} white (..);

/% CD)

}

“Dynamic Instances”
(of instructions / basic blocks)

10 | LLVM 2020 | Evolving “convergent” AMDn

Unstructured loops allow many convergence behaviors

CFG Thread 1 Thread 2 Combined

void fn_loopnest() {

// (A)
do {
do {

// (B)
} while (..);

// (C)
} while (..);

/% CD)

}

= Same CFG, different expected convergence behavior based on high-level language source

» Loss of information: CFG by itself doesn’t bound convergence behavior at all

11 | LLVM 2020 | Evolving “convergent” AMDn

Break blocks

void fn_break() {
// (A)
for (;;) {
// (B)
if () o
// (C)

break;

}

1
fiken (DY
1

Thread 1

Thread 2

Maximal
reconvergence
_|

= \With convergent operations in (C), maximal reconvergence may not be desired

12 | LLVM 2020 | Evolving “convergent”

aL|

Developer
Expectation

AMDA1

» Functions that internally use convergent operations may or may not “care about” the “active set of threads” with which
they are called

= For subgroupAverage, the set of communicating threads is part of the contract with the caller
= unorderedAppend only requires that all convergent operations communicate among the same set of threads

= \Want a way to express this distinction in IR

float subgroupAverage(float x) { void unorderedAppend(T data) {
return subgroupAdd(x) / uint popcount = subgroupAdd(1);
subgroupAdd(1); uint base;
} if (subgroupElect())

base = atomicAdd(bufferTail, popcount);
uint idx = subgroupBroadcastFirst(base) +
subgroupExclusiveAdd(1);
buffer[idx] = data;

AMDA1

* Convergent operations communicate with other threads

* The set of communicating threads is the set of threads that executes the same dynamic
instance

= Basic rules:
- Different static instructions - different dynamic instances

- Different executions of the same static instruction by the same thread (e.g. different
loop iterations) = different dynamic instances

- Different threads executing the same static instruction - may be the same dynamic
instance

* Only the dynamic instances of convergent operations are relevant for program behavior

AMDA1

Spontaneous divergence and reconvergence is generally allowed

Combined
CFG Dynamic Instances

» Additional tools are required to usefully constrain dynamic instances

15 | LLVM 2020 | Evolving “convergent” AMDn

Convergence control bundles and intrinsics
" |ntrinsics producing convergence control token values

token @Llvm.experimental.convergence.entry() convergent readnone

token @Llvm.experimental.convergence.loop() ["convergencectrl"(token)] convergent
readnone

token @Llvm.experimental.convergence.anchor() convergent readnone

= Convergent operations are controlled

call void @myConvergentOperation() ["convergencectrl"(token %tok) |

» Fundamental rule:

- Let U be a controlled convergent operation [...] whose convergence token is produced
by an instruction D

= Two threads executing U execute the same dynamic instance of U if and only
if they obtained the token value from the same dynamic instance of D

16 | LLVM 2020 | Evolving “convergent” AMDn

Enforcing reconvergence: the simplest case

Control-flow graph Reconvergence No reconvergence

awil
awil

17 | LLVM 2020 | Evolving “convergent” AMDn

Enforcing reconvergence: a partial case

Control-flow graph Tight reconvergence Late reconvergence
= —
3 3
D D
\ 4
v

AMDA1

18 | LLVM 2020 | Evolving “convergent”

Enforcing non-reconvergence: break blocks

Maximal Developer

CFG Thread 1 Thread 2 Expectation

void fn_break() {
// (A)
for (;;) {
// (B)
if () o
// (C)
break;

}

}
// (D)

awi]

}

19 | LLVM 2020 | Evolving “convergent” AMDn

token convergent readnone
token convergent readnone

» Entry links to the set of threads in the caller
= Dynamic instances of “entry” congruent to dynamic instances of “call” instruction
= Can only appear in a function’s entry block
= Use in subgroupAverage

= Anchor can appear anywhere, provides no guarantees
= Dynamic instances are implementation-defined

= Intention is to capture as many threads as possible while allowing maximum freedom
for optimizations

= Use in unorderedAppend

AMDA1

Return Of the |00|35 Combined: Combined:
Thread 1 Thread 2 Loop with continue Nested loops

= Contradicts the fundamental rule of controlled convergent operations!
= This is defined to be invalid IR (addition to the IR verifier will flag this)

21 | LLVM 2020 | Evolving “convergent”

AMDA1

Loop hearts

Combined: Combined:
Thread 1 Thread 2 Loop with continue Nested loop

= | oop heart rule: two threads execute the same dynamic instance of a loop heart
if and only if the convergence token was produced by the same dynamic instance
and both threads execute the heart the n'th time with that value (same n)

22 |LLVM 2020 | Evolving “convergent”

AMDA1

Loop hearts

Combined: Combined:
Thread 1 Thread 2 Loop with continue Nested loop

= | oop heart rule: two threads execute the same dynamic instance of a loop heart
if and only if the convergence token was produced by the same dynamic instance
and both threads execute the heart the n'th time with that value (same n)

23 | LLVM 2020 | Evolving “convergent” AMDn

= Frontend
C\a(\%?- Insert “convergencectr!” bundles and instructions for [anguages with convergent operations

Do“e- The ConvergenceControlHeuristic pass provides best-effort insertion heuristics
* Transforms
= Generic transforms are conservatively correct if they “don’t move convergent operations across control flow”

DO No general theorem, but that’s what experience suggests so far
= No known cases of spooky action at a distance

= Backend
= Ensure convergence as required by convergence control intrinsics

= Uniform / Divergence analysis
= Uniformity of values can be affected by convergence control intrinsics
= Avalue Vis uniform at a program point P if an appropriately controlled convergent operation in P sees the same
value of V in all communicating threads
10 d0= Want agl API where users of divergence analysis can query the correct convergence control intrinsics / token to be
inserte

AMDA1

The end

History of “convergent”

Cross-lane operations and examples

Composition

Convergence control intrinsics and rules for dynamic instances

https://reviews.llvm.org/D85603

token @Llvm.experimental.convergence.entry() convergent readnone
token @Llvm.experimental.convergence.loop() ["convergencectrl"(token)] convergent

readnone
token @Llvm.experimental.convergence.anchor() convergent readnone

Thank you!

25 | LLVM 2020 | Evolving “convergent” AMDn

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical
errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and
roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing
manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this
information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation
of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY
INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE
LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION
CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2020 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices,
Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

AMDA1

