
Improving code reuse in clang tools with clangmetatool

Daniel Ruoso
druoso@bloomberg.net

Bloomberg

October 17, 2018



Static Analysis and Automated Refactoring at Bloomberg

I

I

I



Static Analysis and Automated Refactoring at Bloomberg

I 30+ years of code

I

I



Static Analysis and Automated Refactoring at Bloomberg

I 30+ years of code

I substantial amount of reuse

I



Static Analysis and Automated Refactoring at Bloomberg

I 30+ years of code

I substantial amount of reuse

I continuously integrated and deployed



Writing Language Tools – A brief History

I

I

I



Writing Language Tools – A brief History

I tools space with gcc

I

I



Writing Language Tools – A brief History

I tools space with gcc

I llvm3.8 boom

I



Writing Language Tools – A brief History

I tools space with gcc

I llvm3.8 boom

I clangTooling



My first clang tool

I

I

I



My first clang tool

I exercise: re-implement include-what-you-use

I

I



My first clang tool

I exercise: re-implement include-what-you-use

I unsure about life-cycle? just use globals

I



My first clang tool

I exercise: re-implement include-what-you-use

I unsure about life-cycle? just use globals

I unsure about when to rewrite? just rewrite asap



My first clang tool

I

I

I



My first clang tool

I so many stub doxygen docs

I

I



My first clang tool

I so many stub doxygen docs

I so many callbacks

I



My first clang tool

I so many stub doxygen docs

I so many callbacks

I life-cycle of objects unclear



My first clang tool – Lessons

I

I

I



My first clang tool – Lessons

I writing a clang tool is actually not that hard

I

I



My first clang tool – Lessons

I writing a clang tool is actually not that hard

I not a single line of reusable code

I



My first clang tool – Lessons

I writing a clang tool is actually not that hard

I not a single line of reusable code

I tightly coupling: analysis, rewriting, data collection



Principles

I

I

I



Principles

I Refactoring tool should make smallest possible change

I

I



Principles

I Refactoring tool should make smallest possible change

I Create the tool, run it, throw it away

I



Principles

I Refactoring tool should make smallest possible change

I Create the tool, run it, throw it away

I Design Patterns: Collect, Analyze, Rewrite



Design Pattern: Data Collectors

I

I

I



Design Pattern: Data Collectors

I Register callbacks, stores data in member

I

I



Design Pattern: Data Collectors

I Register callbacks, stores data in member

I No specific analysis performed

I



Design Pattern: Data Collectors

I Register callbacks, stores data in member

I No specific analysis performed

I Expose the data in a useful way



Design Pattern: Analysis

I

I

I



Design Pattern: Analysis

I Single entry point

I

I



Design Pattern: Analysis

I Single entry point

I Straight-forward imperative code

I



Design Pattern: Analysis

I Single entry point

I Straight-forward imperative code

I As little tool-specific code as possible



Design Pattern: Refactoring

I

I

I



Design Pattern: Refactoring

I Already part of the tooling API

I

I



Design Pattern: Refactoring

I Already part of the tooling API

I Just fill in the ReplacementsMap

I



Design Pattern: Refactoring

I Already part of the tooling API

I Just fill in the ReplacementsMap

I Handles coherency for you



clangmetatool

I Life-cycle management

I Data collectors

I Reusable Analysis



clangmetatool: life-cycle management

1 int main(int argc, const char* argv[]) {

2 llvm::cl::OptionCategory MyToolCategory("my-tool options");

3 llvm::cl::extrahelp CommonHelp

4 (clang::tooling::CommonOptionsParser::HelpMessage);

5 clang::tooling::CommonOptionsParser

6 optionsParser(argc, argv, MyToolCategory);

7 clang::tooling::RefactoringTool tool(optionsParser.getCompilations(),

8 optionsParser.getSourcePathList());

9 clangmetatool::MetaToolFactory< clangmetatool::MetaTool<MyTool> >

10 raf(tool.getReplacements());

11 int r = tool.runAndSave(&raf);

12 return r;

13 }



clangmetatool: life-cycle management

1 class MyTool {

2 private:

3 SomeDataCollector collector1;

4 SomeOtherDataCollector collector2;

5 public:

6 MyTool(clang::CompilerInstance* ci, clang::ast_matchers::MatchFinder *f)

7 :collector1(ci, f), collector2(ci, f) {

8 // the individual collectors will register their callbacks in their

9 // constructor, the tool doesn’t really need to do anything else here.

10 }

11 void postProcessing

12 (std::map<std::string, clang::tooling::Replacements> &replacementsMap) {

13 // use data from collector1 and collector2

14 // generate warnings and notices

15 // add replacements to replacementsMap

16 }

17 };



clangmetatool: reusable data-collector

1 class WhoCallsIt {

2 private:

3 clangmetatool::collectors::FindCalls fc;

4 public:

5 MyTool(clang::CompilerInstance* ci, clang::ast_matchers::MatchFinder *f)

6 :(ci, f, "legacyfunction") {

7 }

8 void postProcessing

9 (std::map<std::string, clang::tooling::Replacements> &replacementsMap) {

10 FindCallsData *fcd = fc.getData();

11 auto calls_it = fcd->call_ref.begin();

12 while (calls_it != fcd->call_ref.end()) {

13 // do something for each call to legacyfunction

14 }

15 }

16 };



clangmetatool: reusable analysis

1 clangmetatool::propagation::ConstantCStringPropagator prop(ci);

2 PropagationResult<std::string> r = prop.runPropagation(funcdecl, vdrefexpr);

3 if (!r.isUnresolved()) {

4 std::cout

5 << "value of variable at this point is "

6 << r.getResult()

7 << std::endl;

8 }



Impact at Bloomberg

I low cost to writing new tools

I custom static analysis accessible

I automated refactoring on the rise



Questions?

druoso@bloomberg.net
https://bloomberg.github.io/clangmetatool

https://bloomberg.github.io/clangmetatool

	Introduction
	Static Analysis and Automated Refactoring at Bloomberg
	Writing Language Tools – A brief History

	Writing your first clang tool
	Our approach
	Data Collectors
	Analysis
	Refactoring

	clangmetatool
	Conclusion

