
Improving LLVM-Generated
Code Size for X86 Processors

David Kreitzer
Zia Ansari

Intel Corporation

Introduction

• Code Size is often ignored

• But it is still important!
Embedded
Systems

Embedded
Systems

Cloud
Computing

Cloud
Computing

Micro-
controllers

Micro-
controllers

Introduction

Intel® Quark™ Microcontroller D2000

• 32-bit Pentium® instruction set

• No native floating-point support

Introduction

• How does LLVM code size look for Intel® Quark™
D2000 Microcontroller?

3.02

3.39

3.04

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

GCC 4.9.3 Trunk without changes Trunk with changes

T
o

ta
l

C
o

d
e

 S
iz

e
 (

M
b

y
te

s
)

C/C++ SPEC 2000 Code Size
D2000 Target

Methodology

• Team: Zia Ansari, David Kreitzer, Michael Kuperstein,
Andrey Turetskiy, Anton Nadolski

• What metric to use?

• Gap analysis

• Evaluation and implementation

Individual Findings

• For each finding

• Explain the opportunity with an example

• Give the impact on C/C++ SPEC 2000

• Report the status of the fix in LLVM trunk

Fixed Inefficient Immediate
Encodings

• Use 1-byte imm encoding of “imm op mem” instructions

• 0.22% code size reduction

• Committed as rL241152 on Jul 1, 2015
(http://reviews.llvm.org/D10766)

INSTRUCTION BINARY ENCODING

cmpl $0x1, global 83 3d 00 00 00 00 01

cmpl $0x1, global 81 3d 00 00 00 00 00 00 00 01

Fixed Poor Floating-Point
Compares under -msoft-float

• Affects all targets with soft float emulation

• 0.79% code size reduction

• Committed rL242280 on Jul 15, 2015
(http://reviews.llvm.org/D10804)

%cmp = fcmp ule double %a, %b

BEFORE AFTER

__ledf2(a, b) <= 0 ||
__unorddf2(a, b) != 0

__gtdf2(a, b) <= 0

%cmp = fcmp ule double %a, %b = !fcmp ogt double %a, %b

BEFORE (12 BYTES) AFTER (8 BYTES) BETTER (9 BYTES)

movsbl 8(%esp), %eax
movsbl 4(%esp), %ecx
cmpl %eax, %ecx

movb 4(%esp), %al
cmpb 8(%esp), %al

movzbl 4(%esp), %eax
cmpb 8(%esp), %al

Avoid Promoting to 32-bit CMP

• rL195496 promotes compares to avoid partial reg writes

• 0.78% code size reduction from reverting rL195496

• We are working on a more comprehensive fix for the
partial register write issue: rL260572 on Feb 11, 2016
(http://reviews.llvm.org/D17032)

• We hope to eventually revert r195496

Tuning Loop Rotation

• 0.75% code size reduction from -rotation-max-header-size=2

• We plan to tune this specifically for Quark

C code: for (i = 0; i < n; ++i) { ... }

Basic lowering:

i = 0;
while (true) {

if (i >= n) break;
...
++i;

}

Loop trip count = n + 1

After loop rotation:

i = 0;
if (i < n) {

while (true) {
...
++i;
if (i >= n) break;

}
}

Loop trip count = n

Additional condition -
header duplication. More
complicated condition -
bigger code size increase.

X86 Call Frame Optimization

• Committed as rL223757, rL227752, rL244729 on Aug 12, 2015
(http://reviews.llvm.org/D6503, http://reviews.llvm.org/D6789,
http://reviews.llvm.org/D11945)

Instruction Binary Encoding

movl $3, 12(%esp) c7 44 24 0c 03 00 00 00 (8)

movl $2, 8(%esp) c7 44 24 08 02 00 00 00 (8)

movl $1, 4(%esp) c7 44 24 04 01 00 00 00 (8)

movl $.str, (%esp) c7 04 24 00 00 00 00 (7)

calll _printf e8 00 00 00 00 (5)

• PUSH encodes smaller
than MOV, especially
PUSH imm8

push $3 6a 03 (2)

push $2 6a 02 (2)

push $1 6a 01 (2)

push $.str 68 00 00 00 00 (5)

calll _printf e8 00 00 00 00 (5)

addl $16, %esp 83 c4 10 (3)

• 4.2% code size
reduction, larger for non-
MCU targets

Stack Layout Optimization

INSTRUCTION BINARY ENCODING

movl (%esp), %eax 8b 04 24

X86 STACK FRAME

Return Address

%esp+128→

%esp+124→

%esp→

• Order stack objects to maximize
use of 1-byte offsets

Local symbols

movl 124(%esp), %eax 8b 84 24 7c

Local symbols
Local symbols
Local symbols

Local symbols
Local symbols

Local symbols

movl 128(%esp), %eax 8b 84 24 80 00 00 00

• Large objects can hog space

• 1.2% code size reduction

• Committed as rL260917 on
Feb 15, 2016
(http://reviews.llvm.org/D15393)

Fixed Excessive Duplication
of Immediates

• Merge common immediates within a basic block

• 1.5% code size reduction

• Committed rL244601 on Aug 11, 2015
(http://reviews.llvm.org/D11363)

Instruction Binary Encoding

movl $0x3, mem1 c7 05 00 00 00 00 03 00 00 00 (10)

movl $0x3, %eax b8 03 00 00 00 (5)

movl %eax, mem1 a3 00 00 00 00 (5)

movl %eax, mem2 a3 00 00 00 00 (5)

movl $0x3, mem2 c7 05 00 00 00 00 03 00 00 00 (10)

Miscellaneous Optimizations

• Inlining Heuristics

• Threshold adjustments / soft-float heuristics / ODR

• Still tuning / Not upstreamed yet

• LEA Optimizations

• Reuse LEAs in subsequent memrefs and LEAs
Committed rL254712 on Dec 4, 2015 (http://reviews.llvm.org/D13294)
Committed rL257589 on Jan 13, 2016 (http://reviews.llvm.org/D13295)

• ~ 1% Code size reduction

Code Size Results

3.02

3.39

3.04
2.79

3.38

3.06

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

GCC 4.9.3 Trunk without changes Trunk with changes

T
o

ta
l

C
o

d
e
 S

iz
e
 (

M
b

y
te

s
)

C/C++ SPEC 2000 Code Size

+12% +21% +1% +10%

D2000 Target Default 32-bit -Os

- “In terms of Chromium code size, this reduced the size of one of our
main .dlls by 447 kB, which is a significant chunk!” – HansW

Performance Results

• How is Performance affected under -Os?

• MCU Benchmarks : No regressions.

• Big Core Benchmarks : No significant regressions
(> 1%)

• “…time is improved by a whopping 1.6%! ... a very
respectable improvement for general-purpose
backend tuning!” – SeanS

• … following up on 1 O3 flto test-suite performance
regression

Large Code Size Reduction with Minimal Performance Downside

Other Findings and Future
Work

• Tune and upstream inlining and loop rotation
improvements

• Move –Os optimizations to –O2 where appropriate

• Improve –Os for non-Microcontroller targets

• Many other findings, e.g.

o Merge identical (or nearly identical) functions

o Tune frame pointer elimination

o Optimize memcpy/memset for size

Questions?

Backup

Experimental Data Collection

• Experimental option to enable/disable each optimization

• Public patch based on recent LLVM trunk:
(http://reviews.llvm.org/D18098)

• Details are in the patch summary

Tuning Function Inlining

• // Threshold to use when optsize is specified
const int OptSizeThreshold = 75;  change to 15

• Relax inlining penalty given to soft-float instructions
• Loads and Stores shouldn’t require library calls

• Give bonus to hasLinkOnceODRLinkage with single use
• Definition can be removed in object . . . Hope for no more

uses

• 1.1% code size reduction

• Currently being tuned before upstreaming

• 1.1% code size reduction

• Currently being tuned before upstreaming

LEA Optimization

• Removes redundant LEAs (-Oz only)

• 0.09% code size reduction

• Committed rL257589 on Jan 13, 2016 (http://reviews.llvm.org/D13295)

• Removes redundant address recalculations

• 0.15% code size reduction

• Committed rL254712 on Dec 4, 2015 (http://reviews.llvm.org/D13294)

BEFORE AFTER

leal arr+4(%edi,%edi,2), %eax
movl arr(%edi,%edi,2), %edx
leal arr+8(%edi,%edi,2), %ecx
movl $111, (%eax)
movl $222, (%ecx)

leal arr+4(%edi,%edi,2), %eax
movl -4(%eax), %edx
movl $111, (%eax)
movl $222, 4(%eax)

