Improving LLVM-Generated
Code Size for X86 Processors

David Kreitzer
Zia Ansari
Intel Corporation

Introduction

- Code Size is often ignored Ppr_ Lo
i) &
. . Embedded
- But it is still important! Systems &
L
—

Cloud
Computing

Micro- .
controllers

Introduction

Intel® Quark™ Microcontroller D2000

QUARK

- 32-bit Pentium® instruction set
- No native floating-point support

Introduction

- How does LLVM code size look for Intel® Quark™
D2000 Microcontroller?

C/C++ SPEC 2000 Code Size

10 D2000 Target

35 | 3.39

3.02 / 179 3.04
'\2 9 \

29
2.0 =

15

Total Code Size (Mbytes)

1.0

B9

O-O I | 1
GCC 4.9.3 Trunk without changes Trunk with changes

Methodology

- Team: Zia Ansari, David Kreitzer, Michael Kuperstein,
Andrey Turetskiy, Anton Nadolski

- What metric to use?

- Gap analysis

- Evaluation and implementation

Individual Findings

- For each finding
- Explain the opportunity with an example
. Give the impact on C/C++ SPEC 2000

- Report the status of the fix in LLVM trunk

Fixed Inefficient Immediate

Encodings
INSTRUCTION BINARY ENCODING
cmpl $0x1, global 83 3d 00 00 00 00 01
cmpl $0x1, global 381 3d 00 00 00 00 00 00 00 01

- Use 1-byte imm encoding of “imm op mem” instructions
- 0.22% code size reduction

- Committed as rL241152 on Jul 1, 2015
(http://reviews.llvm.org/D10766)

Fixed Poor Floating-Point
Compares under -msoft-float

%cmp = fcmp ule double %a, %b = !fcmp ogt double %a, %b

BEFORE AFTER
__ledf2(a, b} - B || :
___unorddf2(a, D)= __gtdf2(a, b) <=0

- Affects all targets with soft float emulation
- 0.79% code size reduction

- Committed rL242280 on Jul 15, 2015
(http://reviews.llvm.org/D10804)

Avoid Promoting to 32-bit CMP

- rL195496 promotes compares to avoid partial reg writes

- 0.78% code size reduction from reverting rL195496

BEFORE (12 BYTES) AFTER (8 BYTES) BETTER (9 BYTES)

movsbl 8(%esp), %eax movb 4(%esp), %al |movzbl 4(%esp), %eax
movsbl 4(%esp), %ecx cmpb 8(%esp), %al |cmpb 8(%esp), %al
cmpl %eax, %ecx

- We are working on a more comprehensive fix for the
partial register write issue: rL260572 on Feb 11, 2016
(http://reviews.llvm.org/D17032)

- We hope to eventually revert r195496

Tuning Loop Rotation

C code: fOr (E=m————), +1]){ ... }

Basic lowering: After loop rotation:
- O =0 Additional condition -
while (true) { if (i <n){ header duplication. More
if (i >= n) break; while (true) { |complicated condition -
- e bigger code size increase.
++i: S
) if (i >= n) break;
}
}
Loop trip count=n + 1 Loop trip count = n

- 0.75% code size reduction from -rotation-max-header-size=2

- We plan to tune this specifically for Quark

X86 Call Frame Optimization

Instruction

movl S$3, 12(%esp)
movl $2, 8(%esp)

movl $1, 4(%esp)

movl S.str, (%esp)

calll _printf

push $3
push $2
push S1

push S.str

calll _printf
addl $16, %esp

Binary Encoding

<7 44 24 0c 03 00 00 00 (8) PUSH encodes Sma”er
c7 44 2408 02 00 00 00 (8) than MOV, espemally

c7 44 24 04 01 00 00 00 (8) PUSH imm8
7042400000000 (7)

e8 00 00 00 00 (5)

62 03 4.2% code size
6a 02 reduction, larger for non-
02 01 MCU targets

68 00 00 00 00
e8 00 00 00 00
83c410

Committed as rL223757, rL227752, rL244729 on Aug 12, 2015
(http://reviews.llvm.org/D6503, http://reviews.llvm.org/D6789,

http://reviews.llvm.org/D11945)

Stack Layout Optimization

%86 STACK FRAME | * Order stack objects to maximize
Return Address use of 1-byte offsets

« Large objects can hog space

%esp+128—
%esp+124— « 1.2% code size reduction
e Committed as rL260917 on
Yoesp— Feb 15, 2016
(http://reviews.llvm.org/D15393)
INSTRUCTION BINARY ENCODING
movl (%esp), Y%oeax 8b 04 24

movl 124(%esp), %eax 8b 84 24 7c
movl 128(%esp), %eax 8b 84 24 80 00 00 00

Fixed Excessive Duplication
of Immediates

Instruction Binary Encoding
movl S0x3, mem1 c7050000000003000000(10)
movl S0x3, mem?2 c7 050000000003 000000 (10)

movl S0x3, %eax b8 03 000000 (5)
movl %eax, mem1 a3 00000000 (5)
movl %eax, mem2 a3 00000000 (5)

- Merge common immediates within a basic block
1.5% code size reduction

- Committed rL244601 on Aug 11, 2015
(http://reviews.llvm.org/D11363)

Miscellaneous Optimizations

- Inlining Heuristics
- Threshold adjustments / soft-float heuristics / ODR
. Still tuning / Not upstreamed yet

- LEA Optimizations

- Reuse LEAs in subsequent memrefs and LEAs

Committed rL254712 on Dec 4, 2015 (http://reviews.llvm.org/D13294)
Committed rL257589 on Jan 13, 2016 (http://reviews.llvm.org/D13295)

- ~ 1% Code size reduction

Code Size Results

C/C++ SPEC 2000 Code Size
4.0 -

35 . 359 338

3.02 a4 3.00
3.0 | 2.79

2.9 5
2.0 -
+12% +1%
By

1.0

Total Code Size (Mbytes)

0.5

0.0

GCC 4.9.3 Trunk without changes Trunk with changes
D2000 Target Default 32-bit -Os

- “In terms of Chromium code size, this reduced the size of one of our
main .dlls by 447 kB, which is a significant chunk!”— HansW

Performance Results

- How is Performance affected under -Os?
- MCU Benchmarks : No regressions.

‘ (Big Core Benchmarks : No significant regressions
>)

- “...time is improved by a whopping 1.6%! ... a very
respectable improvement for general-purpose
backend tuning!” — SeanS

. ... following up on 1 O3 flto test-suite performance
regression

Large Code Size Reduction with Minimal Performance Downside

Other Findings and Future
Work

- Tune and upstream inlining and loop rotation
iImprovements

- Move —Os optimizations to —O2 where appropriate
- Improve —QOs for non-Microcontroller targets

- Many other findings, e.g.

o Merge identical (or nearly identical) functions
o Tune frame pointer elimination

o Optimize memcpy/memset for size

Questions?

Backup

Experimental Data Collection

- Experimental option to enable/disable each optimization

- Public patch based on recent LLVM trunk:
(http://reviews.llvm.org/D18098)

- Detalls are in the patch summary

Tuning Function Inlining

« // Threshold to use when optsize is specified
const int OptSizeThreshold = 75; < change to 15

« Relax inlining penalty given to soft-float instructions
« Loads and Stores shouldn’t require library calls

* Give bonus to hasLinkOnceODRLinkage with single use
* Definition can be removed in object . . . Hope for no more
uses

e 1.1% code size reduction

* Currently being tuned before upstreaming

LEA Optimization

BEFORE

AFTER

leal
mov1l

mov1l
mov1l

arr+4(%edi,%edi,2), %eax
arr(%edi,%edi,2), %edx

$111, (%eax)
$222, (%ecx)

leal
mov1l
mov1l
mov1l

arr+4(%edi,%edi,2), %eax
-4(%eax), %edx

$111, (%eax)

$222,

- Removes redundant LEAs (-Oz only)

- 0.09% code size reduction

- Committed rL257589 on Jan 13, 2016 (http://reviews.llvm.org/D13295)

- Removes redundant address recalculations

- 0.15% code size reduction

- Committed rL254712 on Dec 4, 2015 (http://reviews.llvm.org/D13294)

