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Emulation

● Instruction level simulation of a 
CPU

● Executes the emulated target's  
instruction set in a virtual machine  
running on a host .

● Simulates memory and MMU

● Simulates peripheral devices 
and/or provides a way to integrate 
external devices

● Performance measured in MIPS 
(millions of emulated instructions 
per second)
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Emulation: Parts of an Emulator

● Instruction decoder

– One for the interpreter

– One for the binary translator

– One for the assembler living down the lane...

● Instruction semantics

– One routine per instruction
● May be in variants (e.g. arithmetic instructions with %g0 as destination)

– Binary translator and interpreter need different types of 
instruction descriptions...

● Write two... or rather not.

● Write one and #ifdef yourself around issues

● Write one and transform it to the relevant format
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Emulation: Interpretation

● Decode dispatch

– Main loop:
● instr = fetch(mem, cpu->pc) ;; Fetch instruction 

● impl = decode(instr) ;; Decode instruction

● impl(cpu, mem) ;; Execute instruction, can be indirect branch to label....

● Threaded Interpreter

– Instructions embed the main loop, i.e. threads it along the instructions
● Avoids the return to main loop instruction
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Emulation: Binary Translation

● Roughly the same as a JITter

– Similar optimisations apply

● Translates blocks of target code to native host code on the fly

● Can combine with interpreters

– Common approach in JavaScript engines

● Basic block is often related to target code, not host code...

● Basic block chaining embeds the emulation loop (similar to 
interpreter threading)

● Implementation

– C function emitting code directly (no optimisations except simple ones 
(e.g. proper instruction selection))

● Very fast at code generation time

– Data driven: emulator intermediate used to emit machine code after 
transformations (e.g. LLVM IR) 
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Emulation

● Common Implementation Languages

– Assembler
● Can fine tune

● Not portable

– C
● Usually not fast enough for interpretation (except when threading 

code...)

● Can implement dynamic code generator reasonably efficiently

– Custom languages / DSLs
● Portable (depending on DSL compiler)

● High performance

● Easy to maintain but may need significant resources for in-house 
maintenance.

● T-EMU 2 use the LLVM toolchain

– TableGen for instruction decoders

– LLVM Assembler for instruction semantics (embedded in 
TableGen files)
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State of the Art

● Binary translators

– OVPSim

– Windriver Simics (~350 MIPS)

– QEMU (partially GPL → no use in certain industries)

● Interpretation (SPARC emulators)

– TSIM (~60 MIPS)

– ESOC Emulator (65 MIPS no MMU, 25 MIPS with MMU)

– T-EMU 2.0...

● Others

– Countless of game console emulators etc
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T-EMU 2.0: The Terma Emulator

● T-EMU 1:

– Derivation of ESOC Emulator Suite 1.11

– Formed the baseline for the work on ESOC Emulator Suite 2.0

– Written in EMMA: The Extensible Meta-Macro Assembler (embedded assembler, 
using Ada as host language)

– Emulates
● MIL-STD-1750A/B

● SPARCv8 (ERC32, LEON2, LEON3)

● T-EMU 2:

– Complete rewrite

– Using modern C++11 and LLVM

– LLVM compiler tools are used extensively

– Interpreted, but ready to upgrade with binary translation capabilities

– Significant work spent on defining a device modelling APIs
● Can easily be wrapped for scripting languages (e.g. prototype your device model in Python) or 

SMP2 (an ESA standard for simulation models)

– Can emulate multi-core processors

– Emulates SPARCv8 (ERC32, LEON2, LEON3, LEON4)
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T-EMU 2.0: The Terma Emulator

● Library based design

– Easy to integrate in simulators

– Public stable API is C (i.e. can integrate with just 
about anything).

● Command Line Interface

– Assisting with emulator and model development 
and integration

– Embedded / on-board software development (e.g. 
unit tests)
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T-EMU 2.0: Architecture and Internals

● Emulator Cores:

– Written in TableGen and LLVM assembler

– (Operational) decode-dispatch cores transformed to 
threaded code automatically using custom LLVM 
transformation passes.

– TableGen data combines: instruction decoders, 
instruction semantics and assembler syntax in a 
transformable format

– Multi-core support

● Emulator Shell

– Implemented using the T-EMU 2.0 object system APIs

– Integrates auto-generated assemblers and disassemblers 
generated from TableGen data.

– High level interfaces
● Interrupt interface, memory interface, etc
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T-EMU 2.0: Memory Emulation

● Each processor has a memory 
space attached to it:

– Memory space decodes addresses

● N-level page table for identifying 
memory mapped objects

– memory

– devices

● Unified interface for memory and 
devices:

– Memory Access Interface

– Zero-overhead for MMU due to address 
translation cache 

● Memory attributes

– breakpoint, watchpoint read + write, 
upset, faulty, user 1,2,3 

Load VA

Lookup virtual
page address in

Address
Translation

Cache

call
external
read()

Cache
hit?

load
ATC_entry.host

+ VA & 0x00000fff 

Value Loaded

NO

YES
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T-EMU 2.0: Device Models

typedef struct temu_MemTransaction {
  uint64_t Va; // Virtual addr
  uint64_t Pa; // Physical addr
  uint64_t Value; // Out or in value
  uint8_t Size; // Log size of access

  uint64_t Offset; // Pa – Dev Start
  void *Initiator; // CPU pointer
  void *Page; // Out (for ATC)
  uint64_t Cycles; // Out (cost of op)
} temu_MemTransaction;

typedef struct temu_MemAccessIface {
  void (*fetch)(void *Obj, temu_MemTransaction *Mt);
  void (*read)(void *Obj, temu_MemTransaction *Mt);
  void (*write)(void *Obj, temu_MemTransaction *Mt);
} temu_MemAccessIface;

MMIO Models Implement the MemAccessIface:

The functions take a potiner to a MemTransaction object (which is constructed by the core):
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T-EMU 2.0: Compilation Pipeline

Sparc.td

Core.ll
(LLVM asm)

Disassembler
.cpp

Assembler
.cpp

Sparc.cpp

ThreadedCore.bc
(LLVM bitcode)

Sparc.so

opt
Decode-

dispatch to
threaded
transformEmuGen
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TableGen Based Capabilities

● Generate multiple instruction decoders

– Switch based (C or LLVM ASM / IR)

– Table based (nested tables or single table)

– Can quickly pick the best one for the task and experiment
● Assemblers use switch based decoders

● Interpreter use single table decoder

● Generates decode-dispatch emulator core in LLVM 
assembler

● Generates assembler and disassembler from instruction 
descriptions.

● Simplified maintenance due to code block concatenation 
and multi-classes used to e.g. provide single definition 
for both reg-reg and reg-imm operations.
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LLVM Transformations

● Decode dispatch core has one function per instruction (it is operational 
using an emulator loop implemented in C).

– Decode table identifies functions

● LLVM pass creates a single “emulate” function

– One label per instruction

– One call to semantics for the instruction

– Fetch, decode and indirect branch after call

– Semantics are inlined into the single emulate function

– Decode table transformed to an indirect branch target table

● Emulator intrinsics:

– All state accesses and modifications done through emulator intrinsics

– E.g. call @emu.getReg(cpu_t *cpu, i5 %rs1)

– We can easily change the way we access registers (different alternatives for emulating 
SPARC register windows and similar) e.g:

● Indirect access through pointer array (nice in an interpreter)

● First and last window synchronisation on save, restore and %psr updates (nice in a binary translator)
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T-EMU 2.0: TableGen CPU Descriptions

multiclass ri_inst_alu<bits<2> op, bits<6> op3, string asm, code sem> {

  def rr : fmt3_1<op, op3> {

    let AsmStr = asm # “ {rs1:gpr}, {rs2:gpr}, {rd:gpr}”;

    let Semantics = [{

      %r1 = call i32 @emu.getReg(%cpu_t* %cpu, i5 %rs1)

      %r2 = call i32 @emu.getReg(%cpu_t* %cpu, i5 %rs2)

    }] # sem # [{

      call void @emu.setReg(%cpu_t* %cpu, i5 %rd, i32 %res)

    }]

  }

  def ri : fmt3_2<op, op3> {

    let AsmStr = asm # “ {rs1:gpr}, {simm13}, {rd:gpr}”;

    ...

  }

}

defm add : ri_inst_alu <0b10, 0b1010101, “add”, [{

    %res = add i32 %r1, %r2

}]>;
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LLVM Transformation

def  void @add_rr (%cpu_t*  %cpu,  i32 %inst)  {

unpack:

  %rs1 = call i5 @emu.unpack.i5(i32 %inst, i32 14)

  %rs2 = call i5 @emu.unpack.i5(i32 %inst, i32 0)

  %rd = call i5 @emu.unpack.i5(i32 %inst, i32 25)

  br label %semantics

semantics:

  %r1 = call i32 @emu.getReg(%cpu_t* %cpu, i5 %rs1)

  %r2 = call i32 @emu.getReg(%cpu_t* %cpu, i5 %rs2)

  %res = add i32 %r1, %r2

  call void @emu.setReg(%cpu_t* %cpu, i5 %rd, i32 %res)

  ret void

}
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LLVM Transformations

;; Note: grossly simplified (no step updates,

;; missing hundereds of instructions etc)

def @emulate(%cpu_t* %cpu, i64 %steps) {

entry:

  %pc = call i32 @emu.getPc(%cpu_t* %cpu)

  %inst = call i32 @emu.fetch(%cpu_t* %cpu, i32 %pc)

  %dest = call i8* @emu.decode(i32 %inst)

  indirectbr %dest

add_rr:

  %inst0 = phi i32 entry %inst...

  call void @add_rr(%cpu_t* %cpu, %inst0)

  %pc0 = call i32 @emu.normalIncPc(%cpu_t* %cpu)

  %inst1 = call i32 @emu.fetch(%cpu_t* %cpu, i32 %pc0)

  %dest1 = call i8* @emu.decode(i32 %inst0)

  indirectbr %dest1

}
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Current Interpreted Emulator Performance

TSIM

ESOC Emulator

T-EMU 2.0

0 10 20 30 40 50 60 70 80 90 100

MIPS (higher is better)

● 3.5 GHz x86-64
● ESOC Emu numbers are for the stock ESOC Emu configuration without MMU. Current ongoing 

optimisation work.
● TSIM numbers from http://www.gaisler.com/
● Anything above 50 MIPS is high performance for an interpreted emulator
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T-EMU: General Future Directions

● Binary translation (>300 MIPS)

● Additional architectures (ARM, PowerPC, MIPS etc)

● Direct support for more ways for device modelling:

– SMP2

– System-C

– VHDL

● Bigger model library:

– Provide models for all common spacecraft processors and peripherals
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T-EMU: Directions with LLVM

● Binary translation

– Instruction semantics already binary translation friendly

– Binary translation specific decoders can be generated

– LLVM format can be transformed to:
● Direct code emitting functions:

– Code emission will be fast

● Pre-generated instructions implementations for memcopy-based code emission:
– Code must obviously be PIC

– Code emission will be very fast

– Stiching of code blocks is tricky

● LLVM or IR templates for LLVM based JIT
– Code emission will be “slow”

– Can use optimisations (emitted code will be fast)

– Likely slower than we want in the standard case

– MC-JIT can probably be used.

– One LLVM function per extended basic blocks (e.g. the SCCs formed by 
standard emulated basic blocks with indirect and absolute branches (in 
the target code) as terminators).

● Note: we probably want a multi-tier JITter (see e.g. the WebKit JavaScript engine).



© 2015 Terma A/S 23

Bumps on the Road

● TableGen is not really well documented:

– Several semantic issues are best figured out by 
using it

– The existing documentation and a LLVM dev 
meeting video tutorial helps

– Read the source...

● Writing in LLVM assembler:

– Hard to debug

– No way to include files (M4 or CPP to the 
rescue)

– No way to define named constants (M4 or CPP 
to the rescue again)

– It wasn't really intended for this, so we are not 
complaining… :)
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LLVM and T-EMU 2

● LLVM is useful in an emulator for two reasons

– TableGen (really powerful)

– IR and the transformation passes

● LLVM is not just for compilers and programming language 
designers

● Enabled the rapid development of a new high-performance 
and hackable  emulator in a short time

● Ensures we can extend the new emulator with binary 
translation without rewriting the instruction definitions.

● Domain specific code transformations are very, very 
powerful. LLVM transformation toolchain is not just for 
standard compiler optimisations

● Unique use of LLVM (we think)

– Related work exists (e.g. LLVM as optimisation of QEMU)
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Questions?

PoCs:
● Technical: Dr. Mattias Holm <maho@terma.com>
● Sales: Roger M. Patrick <rmp@terma.com>

http://t-emu.terma.com/

mailto:maho@terma.com
mailto:rmp@terma.com
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Further Reading

● Dynamically Translating x86 to 
LLVM using QEMU: Vitaly 
Chipounov and George Candea , 
2010

● Using the LLVM Compiler 
Infrastructure for Optimised 
Asynchronous Dynamic 
Translation in QEMU, Andrew 
Jeffery , 2009

● LnQ: Building High Performance 
Dynamic Binary Translators with 
Existing Compiler Backends, 
Chun-Chen Hsu et.al , 2011
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