
Vectorization of Control Flow

with New Masked Vector Intrinsics

Elena Demikhovsky

Intel® Software and Services Group – Israel

April, 2015

2015 European LLVM Conference

 London, England

Legal Disclaimer & Optimization Notice

Poster at 2013 US LLVM Developers' Meeting

2

Legal Disclaimer & Optimization Notice

Poster at 2014 US LLVM Developers’ Meeting

3

Legal Disclaimer & Optimization Notice

AVX-512 - Greatly increased register file

32 x 512 bit registers

 Higher throughput

 Greatly improved unrolling and inlining

opportunities

SIMD instructions

 arithmetic operations, integer and FP

 logical operations

 memory, including gather and scatter

 vector shuffles

 But! The branch remains scalar

 no multiway branches in SIMD

XMM0-15

16 bytes

YMM0-15

 32 bytes

ZMM0-31

64 bytes

SSE

AVX, AVX2

AVX-512

4

Legal Disclaimer & Optimization Notice

Masking in AVX-512

- New feature of AVX-512?

- We have the “maskmov” instruction in AVX for masking load and store

- What’s new?

- Special mask registers

- 8 new 64-bit registers

- 1 bit per vector lane, up to 64 lanes

- Result of comparison is written to the mask register

- Used in instructions to select vector lanes

- Masked-off elements remain unchanged or zeroed

VCMPPS k3, zmm26, zmm30 // k3 <- comparison result

VADDPS zmm1 {k3}, zmm2, zmm3 // Masked-off elements remain unchanged

VADDPS zmm1 {k3}{z}, zmm2, zmm3 // Masked-off elements are zeroed

5

Legal Disclaimer & Optimization Notice

Why Masking?

- Masking operations is the next most significant step in vectorization

- Mask Load and Store to avoid memory access violations

- Mask FP operation to avoid FP exceptions

- Masked vector instructions enable direct vectorization of code regions

with control flow divergence

6

Legal Disclaimer & Optimization Notice

LLVM IR - no masking support

- Why LLVM is not interested in masked instructions?

- Most of targets do not support masked instructions

- Optimization of instructions with masks is problematic

- What happens when we try to vectorize a loop with control flow divergence?

- Avoid masks if you can

7

But we know we can’t always avoid masking.

How do we move forward?

Legal Disclaimer & Optimization Notice

Avoid masks if you can

8

for (int i = 0; i < N; i++) {

 if (Trigger[i] < Val)

 A[i] = B[i] + 0.5;

 else

 A[i] = B[i] - 1.5;

}

There are many existing techniques that allow loop vectorization without masks

- Static divergence analysis to identify uniform branches

- Hoisting and sinking of equivalent operations

- If-conversion with blend

The focus here is on transformation capabilities

Assume dependence analysis is done and transformation is legal

IF

Block3

Block2

0 1

Block1

Legal Disclaimer & Optimization Notice

Avoid masks if you can

9

for (int i = 0; i < N; i++) {

 if (Trigger[i] < Val)

 A[i] = B[i] + 0.5;

 else

 A[i] = B[i] - 1.5;

}

for (int i = 0; i < N; i++) {

 TmpB = B[i];

 if (Trigger[i] < Val)

 A[i] = TmpB + 0.5;

 else

 A[i] = TmpB - 1.5;

}

Hoist Loads

Legal Disclaimer & Optimization Notice

Avoid masks if you can

10

for (int i = 0; i < N; i++) {

 if (Trigger[i] < Val)

 A[i] = B[i] + 0.5;

 else

 A[i] = B[i] - 1.5;

}

for (int i = 0; i < N; i++) {

 TmpB = B[i];

 if (Trigger[i] < Val)

 A[i] = TmpB + 0.5;

 else

 A[i] = TmpB - 1.5;

}

for (int i = 0; i < N; i++) {

 TmpB = B[i];

 if (Trigger[i] < Val)

 TmpA = TmpB + 0.5;

 else

 TmpA = TmpB - 1.5;

 A[i] = TmpA

}

Hoist Loads Sink Stores

Legal Disclaimer & Optimization Notice

Avoid masks if you can

11

for (int i = 0; i < N; i++) {

 if (Trigger[i] < Val)

 A[i] = B[i] + 0.5;

 else

 A[i] = B[i] - 1.5;

}

for (int i = 0; i < N; i++) {

 TmpB = B[i];

 if (Trigger[i] < Val)

 A[i] = TmpB + 0.5;

 else

 A[i] = TmpB - 1.5;

}

for (int i = 0; i < N; i+=16) {

 TmpB = B[i:i+15];

 Mask = Trigger[i:i+15] < Val

 TmpA1 = TmpB + 0.5;

 TmpA2 = TmpB - 1.5;

 TmpA = BLEND Mask, TmpA1, TmpA2

 A[i:i+15] = TmpA;

}

Hoist Loads

Blend

Sink Stores

for (int i = 0; i < N; i++) {

 TmpB = B[i];

 if (Trigger[i] < Val)

 TmpA = TmpB + 0.5;

 else

 TmpA = TmpB - 1.5;

 A[i] = TmpA

}

Legal Disclaimer & Optimization Notice

Memory access under divergent control

• Load hoisting and Store sinking is not allowed in this case

• Masking of memory operation is required in order to vectorize this

loop

12

for (int i = 0; i < N; i++) {

 if (Trigger[i] < Val) {

 A[i] = B[i] + 0.5;

 }

}

Here we cannot avoid masking!

Legal Disclaimer & Optimization Notice

Our goal

• Allow LLVM compiler to make best use of Advanced SIMD architectures

• Including Intel AVX and AVX-512

• Do not complicate code for other targets

• Avoid introducing new masked instructions into LLVM IR

13

Legal Disclaimer & Optimization Notice

Not Instructions? Let’s go for Intrinsics.

- Consecutive memory access – Masked Vector Load and Store

- The syntax is coherent with instruction

14

store <4 x double> %Val, <4 x double>* %Ptr, align 8

call void @masked.store.v4f64 (<4 x double> %Val, <4 x double>* %Ptr, i32 8,

 <4 x i1> %Mask)

%Val = load <4 x double>, <4 x double>* %Ptr, align 8

%Val = call <4 x double> @masked.load.v4f64 (<4 x double>* %Ptr, i32 8,

 <4 x i1> %Mask, <4 x double> %PassThru)

Load

Store

Legal Disclaimer & Optimization Notice

Masked Vector Load and Store

- Access memory according to the

provided mask

- The mask holds a bit for each vector

lane

- While loading, the masked-off lanes

are taken from the PassThru operand.

- No memory access for all-zero mask

- All ones mask is equal to the regular

vector Load / Store

15

a7 a6 a5 a4 a3 a2 a1 a0 Reg

Mask 1 0 1 1 1 1 0 0

a7 a5 a4 a3 a2 Mem

Masked Store

a7 p6 a5 a4 a3 a2 p1 p0 Result

Mask 1 0 1 1 1 1 0 0

a7 a6 a5 a4 a3 a2 a1 a0
Mem

p7 p6 p5 p4 p3 p2 p1 p0 PassThru

Masked Load

Legal Disclaimer & Optimization Notice

Vectorizing the loop with Masked Load and

Store

16

for (int i = 0; i < N; i++) {

 if (Trigger[i] < Val) {

 A[i] = B[i] + 0.5;

 }

}

for (int i = 0; i < N; i+=16) {

 Mask = Trigger[i:i+15] < Val

 BVec[i:i+15] = call @llvm.masked.load(B[i], Mask)

 CVec[i:i+15] = BVec[i:i+15] + 0.5

 call @llvm.masked.store(A[i], CVec[i:i+15], Mask)

}

Legal Disclaimer & Optimization Notice

Vectorizing the loop with Masked Load and

Store

17

for (int i = 0; i < N; i++) {

 if (Trigger[i] < Val) {

 A[i] = B[i] + 0.5;

 }

}

for (int i = 0; i < N; i+=16) {

 Mask = Trigger[i:i+15] < Val

 BVec[i:i+15] = call @llvm.masked.load(B[i], Mask)

 CVec[i:i+15] = BVec[i:i+15] + 0.5

 call @llvm.masked.store(A[i], CVec[i:i+15], Mask)

}

Note, this instruction

is not masked,

although could be!

Legal Disclaimer & Optimization Notice

Who generates masked intrinsics?

Vectorizer generates masked loads and stores when:

 Load / Store instruction inside predicated basic block

 Memory access is consecutive for induction variable, regardless of the mask

- A[i] is consecutive, A[i*2] is not

 Target supports masked operation

 Cost model shows potential performance gain

- AVX and AVX2 have the “maskmov” instructions, designed to avoid

executing a chain of conditional scalar operations

- AVX-512 has more efficient support for masked operations than AVX

SLP Vectorizer can also benefit from this feature

18

Legal Disclaimer & Optimization Notice

Targets and Data Types

- Target independent syntax

- CodeGenPrepare Pass scalarizes the masked intrinsic if target does not

support it

- Overloaded vector types

19

<4 x double> @masked.load.v4f64 (<4 x double>* %Ptr, i32 8, <4 x i1> %Mask,

 <4 x double> %PassThru)

void @masked.store.v16i32 (<16 x i32> %Val, <16 x i32>* %Ptr, i32 4,

 <16 x i1> %Mask)

We talked about Control Flow Divergence.

And what happens with Data Divergence?

20

Data Divergence

Legal Disclaimer & Optimization Notice

Non-consecutive memory access?

Strided Read

21

for (i=0; i< size; i++)

 Sum += B[i*2]

Random Read

for (i=0; i< size; i++)

 Sum += B[C[i]]

Predicated non-consecutive Read

for (i=0; i< size; i++)

 if (trigger[i])

 A[i] += B[i*i]

for (i=0; i<size; i++)

 out[index[i]] = in[i] + 0.5;

Consecutive Reads and Random Write

Intel AVX-512 architecture has masked gather and scatter instructions –

all these loops may be vectorized

Legal Disclaimer & Optimization Notice

Solution for Random Memory Access

22

- Vector Gather and Scatter Intrinsics

- With mask, (the mask may be all-ones)

%Val = call <4 x double> @masked.load.v4f64 (<4 x double>* %Ptr, i32 8,

 <4 x i1> %Mask,

 <4 x double> %PassTru)

%Val = call <4 x double> @masked.gather.v4f64 (<4 x double*> %Ptrs, i32 8,

 <4 x i1> %Mask,

 <4 x double> %PassTru)

@masked.store.v4f64 (<4 x double> %Val, <4 x double>* %Ptr, i32 8,

 <4 x i1> %Mask)

@masked.scatter.v4f64 (<4 x double> %Val, <4 x double*> %Ptrs, i32 8,

 <4 x i1> %Mask)

Load / Gather

Store / Scatter

Legal Disclaimer & Optimization Notice

Gather And Scatter

How does it work?

• Works with vector of pointers

• Access memory according to the

provided mask

• The mask holds a bit per lane

• The masked-off lanes are taken from

the PassThru operand.

• No memory access for all-zero mask

• Scatter with overlapping vector

indices are guaranteed to be ordered

from LSB to MSB

23

a7 a6 a5 a4 a3 a2 a1 a0 Reg

Mask 1 0 1 1 1 1 0 0

Mem

Masked Scatter

a7

a5 a4

a3

a7 p6 a5 a4 a3 a7 p1 p0 Result

Mask 1 0 1 1 1 1 0 0

p7 p6 p5 p4 p3 p2 p1 p0 PassThru

Masked Gather

a5 a4

a3

Mem a7

LSB

Legal Disclaimer & Optimization Notice

Gather and Scatter Intrinsics

When do we use them?

• Memory access is random with respect to induction variable

• Strides A[i*2],

• Multi-dimensional arrays A[i][j],

• Variable indices A[B[i]]

• Structures A[i].b

• Target should support gather and scatter

• Cost model shows potential performance gain

24

Legal Disclaimer & Optimization Notice

Masked Gather - Example

25

for (unsigned i=0; i<size; i++) {

 if (trigger[i] > 0)

 out[i] = in[index[i]] + (double) 0.5;

}

%mask = icmp sgt <8 x i32> %trigger, zeroinitializer

// load “index” array

%index = call <8 x i32> @llvm.masked.load.v8i32(<8 x i32>* %index_ptr, i32 4,

 <8 x i1> %mask, <8 x i32> undef)

%se_index = sext <8 x i32> %index to <8 x i64>

// Prepare vector GEP – broadcast base + vector index

%ptrs = getelementptr <8 x double*> %brcst_in, <8 x i64> %se_index

%vin = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> % ptrs,

 i32 8, <8 x i1> %mask..)

%res = fadd <8 x double> %vin, <double 5.000000e-01, double 5.000000e-01, ..>

call void @llvm.masked.store.v8f64(<8 x double> %out, <8 x double>* %res,

 i32 8, <8 x i1> %mask)

Legal Disclaimer & Optimization Notice

Strided memory access

Strided access is a specific case of gather / scatter

---- Stride is a compile time constant ----

 for (unsigned i=0; i<size; i++) {

 out[i] = in[i*2] + (double) 0.5;

 }

• Gather is faster than scalar loads but still expensive

• Vector Load + Shuffle is more optimal in many cases

• Not all targets support “gathers”

Why we are talking about strides?

Legal Disclaimer & Optimization Notice

Strided memory access – what can be done?

<8 x double>

@llvm.strided.load.v8f64(double *%ptr, i32 2 /*stride*/ ..)

A. Create gather intrinsic and optimize it later

B. Create loads + shuffles

C. Introduce another intrinsic, for example

Or with indices

<8 x double>

@llvm.indexed.load.v8f64(double *%ptr, <i32 0, i32 2, i32 4 .. >)

 for (unsigned i=0; i<size; i++) {

 out[i] = in[i*2] + (double) 0.5;

 }

Legal Disclaimer & Optimization Notice

Strided memory access with mask

<8 x double>

@llvm.masked.strided.load.v8f64(double *%ptr, i32 2 /*stride*/,

 <8 x i1> %mask,

 <8 x double> %PassThru)

• Masked load with indices

<8 x double>

@llvm.masked.indexed.load.v8f64(double *%ptr,

 <i32 0, i32 2, i32 4 .. >,

 <8 x i1> %mask,

 <8 x double> %PassThru)

 for (unsigned i=0; i<size; i++) {

 if (trigger[i]) {

 out[i] = in[i*2] + (double) 0.5;

 }

 }

• Masked load with stride

Legal Disclaimer & Optimization Notice

Gather for a strided access - Example

29

// get sequential indices

%splat_i = insertelement <8 x i64> undef, i64 %i, i32 0

%brcst.i = shufflevector <8 x i64> % splat_i, <8 x i64> undef, <8 x i32> zeroinitializer

%induction = add <8 x i64> % brcst.i, <i64 0, i64 1, i64 2, i64 3, i64 4, i64 5, i64 6, i64 7>

// set the stride

%strided_index = shl <8 x i64> %induction, <i64 1, i64 1, i64 1, i64 1, i64 1, i64 1, i64 1,

i64 1>

// get the vector of pointers

%splat_in = insertelement <8 x double*> undef, double* %in, i32 0

%brcst.in = shufflevector <8 x double*> % splat_in, <8 x double*> undef, <8 x i32>

zeroinitializer

%gep.random_access = getelementptr <8 x double*> % brcst.in, <8 x i64> %strided_index

// gather (load) all values

%even = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %gep.random_access, i32 8,

 <8 x i1> <1,1,1..>, <8 x double> undef)

A. Create a “gather”

 for (unsigned i=0; i<size; i++) {

 out[i] = in[i*2] + (double) 0.5;

 }

Legal Disclaimer & Optimization Notice

Gather for a strided access - Example

30

B. Create loads + shuffles

%1 = call <8 x double> @llvm.indexed.load.v8f64(double* %in, <8 x i32> <0, 2, 4, ..)

C. Create an “indexed load”

// Stride is 2 – you need 2 loads and 1 shuffle

// Stride is 4 – you need 4 loads and 3 shuffles

// Load 1

%lo = load <8 x double>* %in

%in2 = add %in, 64

// Load 2 – the last load is masked!

%hi = call @llvm.masked.load (<8 x double>* %in2, <8 x i1> < 1,1,1,1,1,1,1,0 >,..)

%even = shufflevector %lo, %hi, <0, 2, 4, 6, 8, 10, 12, 14>

 for (unsigned i=0; i<size; i++) {

 out[i] = in[i*2] + (double) 0.5;

 }

Legal Disclaimer & Optimization Notice

Vectorizing FP operations

31

• FP exceptions mode is not supported by LLVM

• The loop is vectorized by LLVM in spite of potential fp-divide-by-zero

exception

float *A;

for (unsigned i = 0; i < N; i++) {

 if (A[i] != 0)

 C = B / A[i];

 …

}

Legal Disclaimer & Optimization Notice

Correct FP behavior

32

for (int i = 0; i < N; i+=16) {

 Mask = (A[i:i+15] != 0)

 SafeDivider = BLEND Mask, A[i:i+15], AllOnes

 C_safe = B / SafeDivider

 C_new = BLEND Mask, C_safe, C

}

What should we do in order to be correct?

Use safe values

Legal Disclaimer & Optimization Notice

Masking is designed to solve this problem

33

for (int i = 0; i < N; i+=16) {

 Mask = (A[i:i+15] != 0)

 C_new = call @llvm.masked.fdiv(B, A[i:i+15], Mask, C)

}

Pros

The FP behavior is correct

Never be broken during optimization

Cons

Intrinsics are hard to optimize

All FP operations may throw exceptions – more than 20 operations should be covered

Legal Disclaimer & Optimization Notice

Status

• Masked Load and Store intrinsics are supported in 3.6

• Gather and Scatter intrinsics are in progress

• Strided Load and Store – the discussion was opened to target ARM

interleaved loads and stores

• FP operations are next in line

34

Legal Disclaimer & Optimization Notice

Summary

Masking is an essential feature of advanced vector architectures including the

new AVX-512 Intel® Architecture

Intrinsics with masks allow to vectorize many loops that remain scalar today

We appreciate the support of LLVM community. We want to thank the people who

help us define the form of the intrinsics and review the code.

35

Legal Disclaimer & Optimization Notice

References & Related work

1. S. Timnat, O. Shaham, A. Zaks “Predicate Vectors If You Must”.

2. D. Nuzman, I. Rosen, A. Zaks “Auto-vectorization of interleaved data for SIMD”, PLDI,

2006

3. “Automatic SIMD Vectorization of SSA-based Control Flow Graphs”, PhD Thesis, July

2014, Ralf Karrenberg

36

https://e9fe7ff0-a-62cb3a1a-s-sites.googlegroups.com/site/wpmvp2014/paper_8.pdf?attachauth=ANoY7coTOEDyCdv7eiykTGbcWvoWYJOw4SEfvnOS8Ic2hAsPLXeTd3_nFOC5VeE15oseoUEQTe9-4FGoDgBMnN8_8DiOx3a3SRkkc1zTz_yDjmeTmg0a9bKZHv7C-zLSKup9IHJCxB--uuU9feAcynIvV3zbf7BCSGh0eKnwroNO4A0FuB38eUXNgA5N0n0N6hWsEDhv4E3r01ElXg0GrrpN1m8qykT6vw%3D%3D&attredirects=0
https://e9fe7ff0-a-62cb3a1a-s-sites.googlegroups.com/site/wpmvp2014/paper_8.pdf?attachauth=ANoY7coTOEDyCdv7eiykTGbcWvoWYJOw4SEfvnOS8Ic2hAsPLXeTd3_nFOC5VeE15oseoUEQTe9-4FGoDgBMnN8_8DiOx3a3SRkkc1zTz_yDjmeTmg0a9bKZHv7C-zLSKup9IHJCxB--uuU9feAcynIvV3zbf7BCSGh0eKnwroNO4A0FuB38eUXNgA5N0n0N6hWsEDhv4E3r01ElXg0GrrpN1m8qykT6vw%3D%3D&attredirects=0
http://dl.acm.org/citation.cfm?id=1133997
http://dl.acm.org/citation.cfm?id=1133997
http://dl.acm.org/citation.cfm?id=1133997
http://dl.acm.org/citation.cfm?id=1133997
http://dl.acm.org/citation.cfm?id=1133997

Legal Disclaimer & Optimization Notice

Legal Disclaimer & Optimization Notice

• No license to any intellectual property rights is granted by this document.

• Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in
trade.

• This document contains information on products, services and/or processes in development. All information provided here is subject to
change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

• Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions.
Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist
you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

• The products and services described may contain defects or errors known as errata which may cause deviations from published
specifications. Current characterized errata are available on request.

• Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by
visiting www.intel.com/design/literature.htm.

• Intel, the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

• *Other names and brands may be claimed as the property of others

• © 2015 Intel Corporation.

37

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.

These optimizations include SSE2®, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or

effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use

with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable

product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

