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AVX-512 - Greatly increased register file 

32 x 512 bit registers 

 Higher throughput 

 Greatly improved unrolling and inlining 

opportunities 

 

SIMD instructions 

 arithmetic operations, integer and FP 

 logical operations 

 memory, including gather and scatter 

 vector shuffles 

 But! The branch remains scalar 

 no multiway branches in SIMD 

 

XMM0-15  

16 bytes 

YMM0-15 

 32 bytes 

ZMM0-31  

64 bytes 

SSE 

AVX, AVX2 

AVX-512 
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Masking in AVX-512 

- New feature of AVX-512? 

- We have the “maskmov” instruction  in AVX for masking load and store 

 

- What’s new? 

- Special mask registers 

- 8 new 64-bit registers 

- 1 bit per vector lane, up to 64 lanes 

- Result of comparison is written to the mask register 

- Used in instructions to select vector lanes 

- Masked-off elements remain unchanged or zeroed 

VCMPPS k3, zmm26, zmm30            // k3 <- comparison result 

VADDPS zmm1 {k3},    zmm2, zmm3    // Masked-off elements remain unchanged 

VADDPS zmm1 {k3}{z}, zmm2, zmm3    // Masked-off elements are zeroed 
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Why Masking? 

- Masking operations is the next most significant step in vectorization 

- Mask Load and Store to avoid memory access violations 

- Mask FP operation to avoid FP exceptions 

- Masked vector instructions enable direct vectorization of code regions 

with control flow divergence 
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LLVM IR - no masking support 

- Why LLVM is not interested in masked instructions? 

- Most of targets do not support masked instructions 

- Optimization of instructions with masks is problematic 

- What happens when we try to vectorize a loop with control flow divergence? 

- Avoid masks if you can 
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But we know we can’t always avoid masking. 

How do we move forward? 
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Avoid masks if you can 
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for (int i = 0; i < N; i++) { 

  if (Trigger[i] < Val) 

    A[i] = B[i] + 0.5; 

  else 

    A[i] = B[i] - 1.5; 

} 

There are many existing techniques that allow loop vectorization without masks 

- Static divergence analysis to identify uniform branches 

- Hoisting and sinking of equivalent operations 

- If-conversion with blend 

The focus here is on transformation capabilities 

Assume dependence analysis is done and transformation is legal 

IF 

Block3 

Block2 

0 1 

Block1 
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Avoid masks if you can 
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for (int i = 0; i < N; i++) { 

  if (Trigger[i] < Val) 

    A[i] = B[i] + 0.5; 

  else 

    A[i] = B[i] - 1.5; 

} 

for (int i = 0; i < N; i++) { 

  TmpB = B[i]; 

  if (Trigger[i] < Val) 

    A[i] = TmpB + 0.5; 

  else 

    A[i] = TmpB - 1.5; 

} 

Hoist Loads 
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Avoid masks if you can 
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for (int i = 0; i < N; i++) { 

  if (Trigger[i] < Val) 

    A[i] = B[i] + 0.5; 

  else 

    A[i] = B[i] - 1.5; 

} 

for (int i = 0; i < N; i++) { 

  TmpB = B[i]; 

  if (Trigger[i] < Val) 

    A[i] = TmpB + 0.5; 

  else 

    A[i] = TmpB - 1.5; 

} 

for (int i = 0; i < N; i++) { 

  TmpB = B[i]; 

  if (Trigger[i] < Val) 

    TmpA = TmpB + 0.5; 

  else 

    TmpA = TmpB - 1.5; 

  A[i] = TmpA 

} 

Hoist Loads Sink Stores 
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Avoid masks if you can 
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for (int i = 0; i < N; i++) { 

  if (Trigger[i] < Val) 

    A[i] = B[i] + 0.5; 

  else 

    A[i] = B[i] - 1.5; 

} 

for (int i = 0; i < N; i++) { 

  TmpB = B[i]; 

  if (Trigger[i] < Val) 

    A[i] = TmpB + 0.5; 

  else 

    A[i] = TmpB - 1.5; 

} 

for (int i = 0; i < N; i+=16) { 

  TmpB = B[i:i+15]; 

  Mask = Trigger[i:i+15] < Val 

  TmpA1 = TmpB + 0.5; 

  TmpA2 = TmpB - 1.5; 

  TmpA = BLEND Mask, TmpA1, TmpA2 

  A[i:i+15] = TmpA; 

}   

Hoist Loads 

Blend 

Sink Stores 

for (int i = 0; i < N; i++) { 

  TmpB = B[i]; 

  if (Trigger[i] < Val) 

    TmpA = TmpB + 0.5; 

  else 

    TmpA = TmpB - 1.5; 

  A[i] = TmpA 

} 
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Memory access under divergent control 

• Load hoisting and Store sinking is not allowed in this case 

• Masking of memory operation is required in order to vectorize this 

loop 
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for (int i = 0; i < N; i++) { 

  if (Trigger[i] < Val) { 

    A[i] = B[i] + 0.5; 

  } 

} 

Here we cannot avoid masking! 
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Our goal 

• Allow LLVM compiler to make best use of Advanced SIMD architectures 

• Including Intel AVX and AVX-512 

• Do not complicate code for other targets 

• Avoid introducing new masked instructions into LLVM IR 
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Not Instructions? Let’s go for Intrinsics. 

- Consecutive memory access – Masked Vector Load and Store 

- The syntax is coherent with instruction 
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store  <4 x double> %Val, <4 x double>* %Ptr, align 8 

 

call void @masked.store.v4f64 (<4 x double> %Val, <4 x double>* %Ptr, i32 8, 

                               <4 x i1> %Mask) 

%Val = load <4 x double>, <4 x double>* %Ptr, align 8 

 

%Val = call <4 x double> @masked.load.v4f64 (<4 x double>* %Ptr, i32 8, 

                                <4 x i1> %Mask, <4 x double> %PassThru) 

Load 

Store 
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Masked Vector Load and Store 

- Access memory according to the 

provided mask 

- The mask holds a bit for each vector 

lane 

- While loading, the masked-off lanes 

are taken from the PassThru operand. 

- No memory access for all-zero mask 

- All ones mask is equal to the regular 

vector Load / Store 
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a7 a6 a5 a4 a3 a2 a1 a0 Reg 

Mask 1 0 1 1 1 1 0 0 

a7 a5 a4 a3 a2 Mem 

Masked Store 

a7 p6 a5 a4 a3 a2 p1 p0 Result 

Mask 1 0 1 1 1 1 0 0 

a7 a6 a5 a4 a3 a2 a1 a0 
Mem 

p7 p6 p5 p4 p3 p2 p1 p0 PassThru 

Masked Load 
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Vectorizing the loop with Masked Load and 

Store 
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for (int i = 0; i < N; i++) { 

  if (Trigger[i] < Val) { 

    A[i] = B[i] + 0.5; 

  } 

} 

for (int i = 0; i < N; i+=16) { 

 

  Mask = Trigger[i:i+15] < Val 

  BVec[i:i+15] = call @llvm.masked.load(B[i], Mask) 

  CVec[i:i+15] = BVec[i:i+15] + 0.5 

  call @llvm.masked.store(A[i], CVec[i:i+15], Mask) 

 

} 
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Vectorizing the loop with Masked Load and 

Store 
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for (int i = 0; i < N; i++) { 

  if (Trigger[i] < Val) { 

    A[i] = B[i] + 0.5; 

  } 

} 

for (int i = 0; i < N; i+=16) { 

 

  Mask = Trigger[i:i+15] < Val 

  BVec[i:i+15] = call @llvm.masked.load(B[i], Mask) 

  CVec[i:i+15] = BVec[i:i+15] + 0.5 

  call @llvm.masked.store(A[i], CVec[i:i+15], Mask) 

 

} 

Note, this instruction 

is not masked, 

although could be! 
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Who generates masked intrinsics? 

Vectorizer generates masked loads and stores when: 

 Load / Store instruction inside predicated basic block 

 Memory access is consecutive for induction variable, regardless of the mask 

- A[i] is consecutive, A[i*2] is not 

 Target supports masked operation 

 Cost model shows potential performance gain 

- AVX and AVX2 have the “maskmov” instructions, designed to avoid  

executing a chain of conditional scalar operations 

- AVX-512 has more efficient support for masked operations than AVX 

SLP Vectorizer can also benefit from this feature 
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Targets and Data Types 

- Target independent syntax 

- CodeGenPrepare Pass scalarizes the masked intrinsic if target does not 

support it 

- Overloaded vector types 

19 

<4 x double> @masked.load.v4f64 (<4 x double>* %Ptr, i32 8, <4 x i1> %Mask, 

                              <4 x double> %PassThru) 

void @masked.store.v16i32 (<16 x i32> %Val, <16 x i32>* %Ptr, i32 4, 

                           <16 x i1> %Mask) 



We talked about Control Flow Divergence. 

And what happens with Data Divergence? 
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Data Divergence 
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Non-consecutive memory access? 

Strided Read 
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for (i=0; i< size; i++) 

  Sum += B[i*2] 

Random Read 

for (i=0; i< size; i++) 

   Sum += B[C[i]] 

Predicated non-consecutive Read 

for (i=0; i< size; i++) 

  if (trigger[i]) 

    A[i] += B[i*i] 

 

for (i=0; i<size; i++) 

  out[index[i]] = in[i] + 0.5; 

Consecutive Reads and Random Write 

Intel AVX-512 architecture has masked gather and scatter instructions – 

all these loops may be vectorized 
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Solution for Random Memory Access 
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- Vector Gather and Scatter Intrinsics 

- With mask, (the mask may be all-ones)  

%Val = call <4 x double> @masked.load.v4f64   (<4 x double>* %Ptr, i32 8, 

                                               <4 x i1> %Mask, 

                                               <4 x double> %PassTru) 

%Val = call <4 x double> @masked.gather.v4f64 (<4 x double*> %Ptrs, i32 8, 

                                               <4 x i1> %Mask, 

                                               <4 x double> %PassTru) 

@masked.store.v4f64   (<4 x double> %Val, <4 x double>* %Ptr, i32 8, 

                       <4 x i1> %Mask) 

@masked.scatter.v4f64 (<4 x double> %Val, <4 x double*> %Ptrs, i32 8, 

                       <4 x i1> %Mask) 

Load / Gather 

Store / Scatter 
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Gather And Scatter 

How does it work? 

• Works with vector of pointers 

• Access memory according to the 

provided mask 

• The mask holds a bit per lane 

• The masked-off lanes are taken from 

the PassThru operand. 

• No memory access for all-zero mask 

• Scatter with overlapping vector 

indices are guaranteed to be ordered 

from LSB to MSB 
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a7 a6 a5 a4 a3 a2 a1 a0 Reg 

Mask 1 0 1 1 1 1 0 0 

Mem 

Masked Scatter 

a7 

a5 a4 

a3 

a7 p6 a5 a4 a3 a7 p1 p0 Result 

Mask 1 0 1 1 1 1 0 0 

p7 p6 p5 p4 p3 p2 p1 p0 PassThru 

Masked Gather 

a5 a4 

a3 

Mem a7 

LSB 
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Gather and Scatter Intrinsics 
 

When do we use them? 

• Memory access is random with respect to induction variable 

• Strides A[i*2], 

• Multi-dimensional arrays A[i][j], 

• Variable indices A[B[i]] 

• Structures A[i].b 

• Target should support gather and scatter 

• Cost model shows potential performance gain 
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Masked Gather - Example 
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for (unsigned i=0; i<size; i++) { 

    if (trigger[i] > 0) 

      out[i] = in[index[i]] + (double) 0.5; 

} 

%mask = icmp sgt <8 x i32> %trigger, zeroinitializer 

 

// load “index” array 

%index = call <8 x i32> @llvm.masked.load.v8i32(<8 x i32>* %index_ptr, i32 4, 

                                            <8 x i1> %mask, <8 x i32> undef) 

%se_index = sext <8 x i32> %index to <8 x i64> 

 

// Prepare vector GEP – broadcast base + vector index 

 

%ptrs = getelementptr <8 x double*> %brcst_in, <8 x i64> %se_index 

 

%vin = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> % ptrs, 

                                                   i32 8, <8 x i1> %mask..) 

 

%res = fadd <8 x double> %vin, <double 5.000000e-01, double 5.000000e-01, ..> 

 

call void @llvm.masked.store.v8f64(<8 x double> %out, <8 x double>* %res, 

                                    i32 8, <8 x i1> %mask) 
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Strided memory access 

Strided access is a specific case of gather / scatter 

---- Stride is a compile time constant ---- 

 

  for (unsigned i=0; i<size; i++) { 

    out[i] = in[i*2] + (double) 0.5; 

  } 

• Gather is faster than scalar loads but still expensive 

• Vector Load + Shuffle is more optimal in many cases 

• Not all targets support “gathers” 

Why we are talking about strides? 
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Strided memory access – what can be done? 

<8 x double>  

@llvm.strided.load.v8f64(double *%ptr, i32 2 /*stride*/ ..) 

A. Create gather intrinsic and optimize it later 

B. Create loads + shuffles 

C. Introduce another intrinsic, for example 

Or with indices 

<8 x double>  

@llvm.indexed.load.v8f64(double *%ptr, <i32 0, i32 2, i32 4 .. >) 

  for (unsigned i=0; i<size; i++) { 

    out[i] = in[i*2] + (double) 0.5; 

  } 
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Strided memory access with mask 

<8 x double>  

@llvm.masked.strided.load.v8f64(double *%ptr, i32 2 /*stride*/, 

                                <8 x i1> %mask,  

                                <8 x double> %PassThru) 

• Masked load with indices 

<8 x double>  

@llvm.masked.indexed.load.v8f64(double *%ptr, 

                                <i32 0, i32 2, i32 4 .. >, 

                                <8 x i1> %mask, 

                                <8 x double> %PassThru) 

  for (unsigned i=0; i<size; i++) { 

    if (trigger[i]) { 

      out[i] = in[i*2] + (double) 0.5; 

    } 

  } 

• Masked load with stride 
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Gather for a strided access - Example 

29 

// get sequential indices 

%splat_i = insertelement <8 x i64> undef, i64 %i, i32 0 

%brcst.i = shufflevector <8 x i64> % splat_i, <8 x i64> undef, <8 x i32> zeroinitializer 

%induction = add <8 x i64> % brcst.i, <i64 0, i64 1, i64 2, i64 3, i64 4, i64 5, i64 6, i64 7> 

 

// set the stride 

%strided_index = shl <8 x i64> %induction, <i64 1, i64 1, i64 1, i64 1, i64 1, i64 1, i64 1, 

i64 1> 

 

// get the vector of pointers 

%splat_in = insertelement <8 x double*> undef, double* %in, i32 0 

%brcst.in = shufflevector <8 x double*> % splat_in, <8 x double*> undef, <8 x i32> 

zeroinitializer 

%gep.random_access = getelementptr <8 x double*> % brcst.in, <8 x i64> %strided_index 

 

// gather (load) all values 

%even = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %gep.random_access, i32 8, 

                                                    <8 x i1> <1,1,1..>, <8 x double> undef) 

A. Create a “gather” 

  for (unsigned i=0; i<size; i++) { 

    out[i] = in[i*2] + (double) 0.5; 

  } 
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Gather for a strided access - Example 
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B. Create loads + shuffles 

%1 = call <8 x double> @llvm.indexed.load.v8f64(double* %in, <8 x i32> <0, 2, 4, ..) 

C. Create an “indexed load” 

// Stride is 2 – you need 2 loads and 1 shuffle 

// Stride is 4 – you need 4 loads and 3 shuffles 

 

// Load 1 

%lo = load <8 x double>* %in 

%in2 = add %in, 64 

 

// Load 2 – the last load is masked! 

%hi = call @llvm.masked.load (<8 x double>* %in2, <8 x i1> < 1,1,1,1,1,1,1,0 >,..) 

%even = shufflevector %lo, %hi, <0, 2, 4, 6, 8, 10, 12, 14> 

  for (unsigned i=0; i<size; i++) { 

    out[i] = in[i*2] + (double) 0.5; 

  } 
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Vectorizing FP operations 
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• FP exceptions mode is not supported by LLVM 

• The loop is vectorized by LLVM in spite of potential fp-divide-by-zero 

exception 

float  *A; 

for (unsigned i = 0; i < N; i++) { 

 

  if (A[i] != 0) 

    C = B / A[i]; 

   … 

} 
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Correct FP behavior 

32 

for (int i = 0; i < N; i+=16) { 

 

  Mask = (A[i:i+15] != 0) 

  SafeDivider = BLEND Mask, A[i:i+15], AllOnes 

  C_safe = B / SafeDivider 

  C_new = BLEND Mask, C_safe, C 

} 

What should we do in order to be correct? 

Use safe values 
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Masking is designed to solve this problem 
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for (int i = 0; i < N; i+=16) { 

 

  Mask = (A[i:i+15] != 0) 

  C_new = call @llvm.masked.fdiv(B, A[i:i+15], Mask, C) 

} 

Pros 

The FP behavior is correct 

Never be broken during optimization 

 

Cons 

Intrinsics are hard to optimize 

All FP operations may throw exceptions – more than 20 operations should be covered 
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Status 

• Masked Load and Store intrinsics are supported in 3.6 

• Gather and Scatter intrinsics are in progress 

• Strided Load and Store – the discussion was opened to target ARM 

interleaved loads and stores 

• FP operations are next in line 
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Summary 

 

Masking is an essential feature of advanced vector architectures including the 

new AVX-512 Intel® Architecture  

Intrinsics with masks allow to vectorize many loops that remain scalar today 

We appreciate the support of LLVM community. We want to thank the people who 

help us define the form of the intrinsics and review the code. 
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Optimization Notice 
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