
LLPE 
Highly accurate partial evaluation for LLVM IR 

Christopher Smowton 

University of Manchester (kinda) 



LLPE 

• Partial evaluator / program specialiser for 
LLVM IR 

• Thus in effect a cross-module 
C/C++/FORTRAN/… PE 

• Supports 99% of IR (including e.g. funky 
reinterpret casts) 

• Specialises multithreaded programs, or those 
that interact with the kernel, or… 

 



Overview 

• Quick review of PE 

• LLPE features 

• Practical Experience 

• LLVM: a good environment for PE? 

• LLPE current status 



Review: Partial Evaluation 
(functional) 

f_true(y) = y * 2 

f(x, y) = if x then y * 2 else y * 3 



Review: Partial Evaluation 
(imperative) 

char get_checkbyte(const char* in, char init) { 
char checkbyte = init; 
for(int i = 0, ilim = strlen(in); i != ilim; ++i) 
 checkbyte ^= in[i]; 
return checkbyte; 

} 

char get_checkbyte_LLPE(char init) { 
return init ^ ‘L’ ^ ‘L’ ^ ‘P’ ^ ‘E’; 

} 



Review: Partial Evaluation 
(dealing with uncertainty) 

char* digest(const char* in, const char* algo) { 
if(!strcmp(algo, “MD5”)) 
 return digest_md5(in); 
else if(!strcmp(algo, “SHA1”)) 
 return digest_sha1(in); 
... 

} 

in = “LLPE”, algo = ? 



Review: Partial Evaluation 

• Inline functions 

• Peel loop iterations 

• What to do when control flow is uncertain 
during specialisation? 

– Specialise both paths? 

– Stop specialising? 

– Ask the user? 

 



LLPE: Features 
(Arithmetic and basic control) 

add 1, 1 

2 

br true, bb1, bb2 

br bb1 



LLPE: Features 
(Uncertain control flow) 

br ?, bb1, bb2 

... ... 

%x = phi(bb1 -> 1, bb2 -> 2) 

• %x gets a set value {1, 2} 
• Can’t emit this in the specialised program… 
• …but can use it to guide further specialisation 



LLPE: Features 
(Calls and loops) 

• Non-recursive calls: always analyse in context 
(maximally context sensitive) 

• Potentially-unbounded loop or recursion: 
analyse in context if we are certain to enter 
the loop/call given the specialisation 
conditions 

• Otherwise find a fixed point solution. 

 

 



LLPE Features 
(Memory) 

alloca i32 
call malloc(...) 
@0 = i32 0 

Symbolic pointer 

• Symbolic pointer arithmetic, comparison 
• Casts to integer types and back 
• Arbitrary pointer casts (e.g. i64 -> [i8 x 8]) 
• Can’t examine pointer bytes 



LLPE Features 
(Memory) 

• Loads from symbolic pointers (or sets of 
symbolic pointers) can be resolved during 
specialisation 

• Stores write to symbolic memory; eliminated 
if all reading loads are eliminated 

• Symbolic memory merged at control-flow 
merge points 

 

 



LLPE Features 
(I/O) 

call open(...) Symbolic FD 

• Results in a runtime check: file unchanged? 
• Check fails -> branch to unmodified code 



• Volatile or memory-ordering attributes 
indicate potential for concurrent interference: 

– By another thread 

– By another process 

– By a signal handler 

• By default, continue specialising but tag all 
memory as tentative. 

• Tentative loads require a runtime check 

 

 

LLPE Features 
(Threads and Processes) 



LLPE Features 
(limitations) 

• Broad IR support 

• Can’t specialise across a throw -> catch 

– Exception propagation introspects on the binary 

• Can’t specialise across inter-thread 
communicaton (only tolerate its incidental 
presence) 

• Can’t specialise across ASM sections with 
unbounded side-effects (but rare) 

 



LLPE: Experiences 

• Specialised Nginx with respect to an XSLT 
document 

– Effectively “pre-compiling” part of the transform 

– 30% speedup when requesting a doc using that 
XSLT sheet; negligible impact when requesting a 
different document 

• Pared Nginx by “baking in” a particular config 

– Reduced binary size by 30% 



LLPE: Experiences 

• Efficiency (time, space) a concern 

– Around 10,000 : 1 slowdown relative to 
conventional execution, but unoptimised 

• User assistance minimal 

– Around 20 directives to successfully specialise 
Nginx 

• Annotating TLS 

• Annotating bounded loops 

 

 



LLPE: Experiences 

• Still “hits the wall” when confronted with a 
write-through-unknown-pointer 

• Value sets and vague pointers designed to 
minimise writes through unknown 

 



LLVM: A Good Place to PE 

• Fully-linked image with rich semantic 
information 

• Dodges shortcomings of C language 

– Implementation-defined behaviour 

• Rich toolbox of primitive manipulations 



LLVM: A Bad Place to PE 

• Uniqued Constants drove me to copy-paste 
the guts of the constant folder 

• Inability to keep LoopInfo alive for many 
functions at once was a pain 

• Would be nice to get the IR printout in 
structured form, for debugging 

• Ultimately minor complaints; A+++ would 
develop again 

 



Current Status 

• 95% feature complete 

– A few missing corner cases, e.g. mutually recursive 
functions 

• Functioning version for LLVM 3.2 

• Forward port to LLVM 3.6 

• Code rationalisation; developer 
documentation in progress (ETA 1 month) 



www.llpe.org 

• Forums / mailing lists 

• Bug tracker 

• Github repo 


