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PART I

”Background:
SIMD / Vector Instruction / VLIW”

Erkan Diken (e.diken@tue.nl)
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SIMD

I Single-instruction multiple-data (SIMD) hardware
I The same operation on multiple data lanes (in parallel)

r0

+ + + +

r1
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SIMD

I SIMD (vector) width
I Vector data = < #ofelements > x < elementtype >

r0 element1 element2 element3 element4

+ + + +

r1

SIMD width
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128-BIT VECTOR INSTRUCTION

I ADD.128 r0, r0, r1
I 128-bit = (4 x i32, 4 x f32, 8 x i16, 8 x f16, 16 x i8 ...)

32−bit 32−bit 32−bit 32−bit

r0

+ + + +

r1
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64-BIT VECTOR INSTRUCTION

I ADD.64 r0, r0, r1
I 64-bit = (2 x i32, 2 x f32, 4 x i16, 4 x f16, 8 x i8 ...)

32−bit 32−bit 32−bit 32−bit

r0

+ + + +

r1
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32-BIT VECTOR INSTRUCTION

I ADD.32 r0, r0, r1
I 32-bit = (2 x i16, 2 x f16, 4 x i8 ...)

32−bit 32−bit 32−bit 32−bit

r0

+ + + +

r1
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EXAMPLE: INTEL AVX-512 ARCHITECTURE

I The vector processing unit (VPU) in Xeon Phi coprocessor
I ZMM (512-bit), YMM (256-bit), XMM (128-bit) registers

References: ”Intel Architecture Instruction Set Extensions Programming Reference”, ”Intel Xeon Phi Coprocessor Vector Microarchitecture”
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OBSERVATIONS

I SIMD units get wider and wider
I When a part of SIMD unit is not used for a shorter vector

processing:
1. Ignore the results of some SIMD lanes through masking
2. Disable SIMD lanes through hardware reconfiguration (e.g.

clock/power gating)
I Both result in performance and/or energy waste
I Can we:

1. Introduce more SIMD heterogeneity into processor (and)
2. Tackle the introduced complexity (problem) in the compiler
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VLIW WITH MULTIPLE NATIVE SIMD WIDTHS
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Figure : VLIW data-path with 128-bit and 32-bit native SIMD widths

Mixed-width vector code:
I FU#1.ADD.128 r0, r0, r1 || FU#2.ADD.32 r2, r2, r3
I FU#1.ADD.64 r0, r0, r1 || FU#2.ADD.32 r2, r2, r3
I FU#1.ADD.32 r0, r0, r1 || FU#2.ADD.32 r2, r2, r3

BACKGROUND 10 of 52



BACKGROUND MIXED-WIDTH VECTOR CODE GENERATION STATIC SCHEDULING Q & A

VLIW WITH MULTIPLE NATIVE SIMD WIDTHS
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Mixed-width vector code:
I FU#1.ADD.128 r0, r0, r1 || FU#2.ADD.32 r2, r2, r3
I FU#1.ADD.64 r0, r0, r1 || FU#2.ADD.32 r2, r2, r3
I FU#1.ADD.32 r0, r0, r1 || FU#2.ADD.32 r2, r2, r3
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CHALLENGES OF ...

1. Mixed-width vector code generation support (and)
2. Static scheduling

in LLVM for such VLIW architectures
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PART II

”Mixed-width vector code generation in LLVM for VLIW
Architectures”

Erkan Diken (e.diken@tue.nl)
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SHAVE VECTOR PROCESSOR*

(*) SHAVE is part of the Movidius Myriad 1 and Myriad 2 Vision Processor Platform of Movidius Ltd. (www.movidius.com)
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MORE DETAILS

Architecture:
I VAU is designed to support 128-bit vector arithmetic
I VAU accepts operands from 32 x 128 VRF registers
I SAU is designed to support 32-bit vector arithmetic
I SAU accepts operands from 32 x 32 IRF and SRF registers

Compiler:
I The original compiler supports 128-bit and 64-bit vector code

generation.
I 128-bit legal vector types: 16 x i8, 8 x i16, 4 x i32, 8 x f16, 4 x f32
I 64-bit legal vector types: 8 x i8, 4 x i16, 4 x f16
I What about 32-bit vector types: 4 x i8, 2 x i16, 2 x f16 ?

Contribution:
I Implementing 32-bit vector code generation for SAU units in the

compiler back-end
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EXAMPLE: MIXED-WIDTH VECTOR CODE

Listing 1: LLVM IR code with two different vector types
define <4 x i8> @main(<4 x i8> %a, <4 x i8> %b,

<8 x i8> %x, <8 x i8> %y,
<8 x i8>* %zptr){

entry:
%c = add <4 x i8> %a, %b
%z = add <8 x i8> %x, %y
store <8 x i8> %z, <8 x i8>* %zptr
ret <4 x i8> %c

}

Listing 2: Mixed-width vector assembly code
main:

BRU.JMP i30
CMU.CPVI.x32 i9 v22.0
CMU.CPVI.x32 i10 v23.0
VAU.ADD.i8 v15 v21 v20 //64-bit add (8 x i8)

|| SAU.ADD.i8 i10 i10 i9 //32-bit add (4 x i8)
NOP
CMU.CPIV.x32 v23.0 i10

|| LSU1.ST64.l v15 i18
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EXAMPLE: MIXED-WIDTH VECTOR CODE

Listing 3: LLVM IR code with two different vector types
define <4 x i8> @main(<4 x i8> %a, <4 x i8> %b,

<8 x i8> %x, <8 x i8> %y,
<8 x i8>* %zptr){

entry:
%c = add <4 x i8> %a, %b
%z = add <8 x i8> %x, %y
store <8 x i8> %z, <8 x i8>* %zptr
ret <4 x i8> %c

}

Listing 4: Mixed-width vector assembly code
main:

BRU.JMP i30
CMU.CPVI.x32 i9 v22.0
CMU.CPVI.x32 i10 v23.0
VAU.ADD.i8 v15 v21 v20 //64-bit add (8 x i8)

|| SAU.ADD.i8 i10 i10 i9 //32-bit add (4 x i8)
NOP
CMU.CPIV.x32 v23.0 i10

|| LSU1.ST64.l v15 i18
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IMPLEMENTATION DETAILS

I Type legalization: New legal vector types for the target: 4 x i8, 2
x i16, 2 x f16

I Register class association: Which register file class is available for
which vector type

I SRF: 2 x f16
I IRF: 4 x i8, 2 x i16
I Quarter of VRF: 4 x i8, 2 x i16, 2 x f16

I Operation lowering for ISel: Add records to back-end for
matching IR operations with MI

I Natively supported operations: load/store, add, sub, mul, shift etc.
I Custom lowering, expansion, promotion

For more implementation details: ”moviCompile: An LLVM based compiler for heterogeneous SIMD code generation” FOSDEM’15

MIXED-WIDTH VECTOR CODE GENERATION 20 of 52



BACKGROUND MIXED-WIDTH VECTOR CODE GENERATION STATIC SCHEDULING Q & A

IMPLEMENTATION DETAILS

I Type legalization: New legal vector types for the target: 4 x i8, 2
x i16, 2 x f16

I Register class association: Which register file class is available for
which vector type

I SRF: 2 x f16
I IRF: 4 x i8, 2 x i16
I Quarter of VRF: 4 x i8, 2 x i16, 2 x f16

I Operation lowering for ISel: Add records to back-end for
matching IR operations with MI

I Natively supported operations: load/store, add, sub, mul, shift etc.
I Custom lowering, expansion, promotion

For more implementation details: ”moviCompile: An LLVM based compiler for heterogeneous SIMD code generation” FOSDEM’15

MIXED-WIDTH VECTOR CODE GENERATION 21 of 52



BACKGROUND MIXED-WIDTH VECTOR CODE GENERATION STATIC SCHEDULING Q & A

IMPLEMENTATION DETAILS

I Type legalization: New legal vector types for the target: 4 x i8, 2
x i16, 2 x f16

I Register class association: Which register file class is available for
which vector type

I SRF: 2 x f16
I IRF: 4 x i8, 2 x i16
I Quarter of VRF: 4 x i8, 2 x i16, 2 x f16

I Operation lowering for ISel: Add records to back-end for
matching IR operations with MI

I Natively supported operations: load/store, add, sub, mul, shift etc.
I Custom lowering, expansion, promotion

For more implementation details: ”moviCompile: An LLVM based compiler for heterogeneous SIMD code generation” FOSDEM’15

MIXED-WIDTH VECTOR CODE GENERATION 22 of 52



BACKGROUND MIXED-WIDTH VECTOR CODE GENERATION STATIC SCHEDULING Q & A

OVERALL PICTURE (TARGET)

Targettarget description files (*.td)
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OVERALL PICTURE (TARGET, PASSES)

Target

Passes...... BBVectorize LoopVectorize SLPVectorize

target description files (*.td)
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OVERALL PICTURE (TARGET, PASSES, COST MODEL)

Legality −> Profitability −> Vectorize

CostModel

Target

... ... PassesBBVectorize LoopVectorize SLPVectorize

target description files (*.td)
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OVERALL PICTURE (TARGET, PASSES, COST MODEL,
TTI)

Legality −> Profitability −> Vectorize

Target

...

TargetTransformInfo (TTI)

... PassesBBVectorize LoopVectorize SLPVectorize

TTI.getRegisterBitWidth()

TTI.getNumberOfRegisters(VF > 1)

CostModel selectUnrollFactor:

selectVectorizationFactor:

target description files (*.td)
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TARGET TRANSFORM INFO (TTI)
Listing 5: SHAVE

unsigned SHAVETTI::getNumberOfRegisters(bool Vector) const {
if (Vector) {
// 32 VRF registers.
return 32;

}

if (ST->isMyriad1()) {
// 32 IRF registers, 32 SRF registers.
return 64;

}

// 32 IRF registers.
return 32;

}

unsigned SHAVETTI::getRegisterBitWidth(bool Vector) const {
if (Vector) {
// 128-bit VRF registers.
return 128;

}

// 32-bit IRF/SRF registers.
return 32;

}
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TARGET TRANSFORM INFO (TTI)
Listing 6: X86

unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
if (Vector && !ST->hasSSE1())
return 0;

if (ST->is64Bit()) {
if (Vector && ST->hasAVX512())
return 32;

return 16;
}
return 8;

}

unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
if (Vector) {
if (ST->hasAVX512()) return 512;
if (ST->hasAVX()) return 256;
if (ST->hasSSE1()) return 128;
return 0;

}

if (ST->is64Bit())
return 64;

return 32;
}
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LESSONS TAKEN AND DISCUSSION POINTS

I TTI reports only one vector-width for the target, however:
I Returning a list/set of supported vector-widths
I Increases flexibility for mixed-width vector code optimisations

I Even though compiler back-end supports mixed-width vector
code generation, LLVM will always:

I Place the 32-bit vectors in the 32-bit vector registers
I Place 128/64-bit vectors in the 128-bit vector registers
I Affinity between a vector-type and a particular register-class
I Vector type could be associated with a set of register classes, but

with a preferred affinity to one class
I This would allow operations on the shorter vector type to

migrate to a larger vector register type
I In case of register or FU pressure made such migration produce

better code
I This is especially true in a VLIW architecture where two or more

FUs can perform the same task
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PART III

”Static Scheduling in LLVM for VLIW Architectures”

Pierre-Andre Saulais (pierre-andre@codeplay.com)
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1. SCHEDULING CHALLENGES WITH VLIW
ARCHITECTURES

I Important optimisations
I Scheduling hazards
I Example schedule
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IMPORTANT OPTIMISATIONS

I Maximising Instruction-Level Parallelism
I VLIW processors usually have many functional units
I Keep FUs as busy as possible
I Software pipelining and loop unrolling can have a huge impact

I Filling branch delay slots
I Instructions can be executed while a branch is ’pending’
I Fill these slots first using bottom-up scheduling

I Breaking dependencies between instructions
I Dependencies prevent instructions from being executed in parallel
I Rename registers
I Perform early scheduling, before register allocation
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SCHEDULING HAZARDS

I Static scheduling for VLIW architectures
I Not just to achieve optimal performance
I Required for correct execution

I No instruction interlocking / pipeline bubbles
I To reduce power consumption
I Can lead to conflicts between instructions (i.e. hazards)
I Hazards must be handled by the scheduler

I Common hazards to avoid
I Operand not ready
I Port conflicts
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SCHEDULING HAZARDS

I Operand not ready
I Instruction latency must be

taken into account
I Otherwise the previous

register value will be used
I Enforce ’cycle-distance’

dependencies between
instructions

I Register port conflicts
I Cannot write two values

using the same port in a
given cycle

I One value will ’win’ and be
written to both registers

I Track conflicts and schedule
instructions in different cycles
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EXAMPLE SCHEDULE

I Cycle table
I Instruction executed by each FU
I For each cycle in a basic block or function

# CMU IAU VAU LSU0 LSU1 PEU BRU
0 LDIH i17 0x0b0a LDIL i17 0x0908
1 CPIV v12.0 i17 LDIH i16 0x0f0e LDIL i16 0x0d0c4
2 CPIV v13.0 i16 LDIH i9 0x0706 LDIL i9 0x0504
3 CPIV v14.0 i9 LDIH i10 0x0302 LDIL i10 0x0100
4 CPIV v15.0 i10
5 CP.i8.i32 v12
6 CP.i8.i32 v13
7 CP.i8.i32 v14
8 CP.i8.i32 v15 ADD i8 i18 32 LDIL i10 0x0100 LDIL i9 0
9 CPIVR v11 i9 ADD i9 i9 16
10 CMII i9 i10 ADD v22 v11 v13
11 ADD v21 v11 v12 PCXX NEQ BRA #9
12 ADD v20 v11 v14 delay slot
13 ADD v10 v11 v15 del. slot 2
14 ST.l v21 i8 STO.l v22 i8 16 del. slot 3
15 STO.l v10 i8 -32 STO.l v20 i8 -16 del. slot 4
16 STO.h v21 i8 8 STO.h v22 i8 24 del. slot 5
17 ADD i8 i8 64 STO.h v10 i8 -24 STO.h v20 i8 -8 del. slot 6
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2. IMPLEMENTATION WITHIN LLVM

I Scheduling passes in the backend
I SHAVE MI scheduler
I SHAVE hazard recognizer
I Moving instructions across FUs
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SCHEDULING PASSES IN THE BACKEND
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SHAVE MI SCHEDULER

I Based on the list scheduling algorithm
I Assigns costs to each instruction
I Schedules instructions one by one, with decreasing cost

I Enforces dependencies between instructions
I To avoid ’operand not ready’ hazards
I Consumes ISA scheduling information (e.g. latency)

I Bundles multiple instructions into a cycle, to maximise ILP
I Moves instructions across FUs as needed
I Uses a hazard recognizer to avoid conflicts
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SCHEDULING INFORMATION

I Describes which resources are used by an instruction and when
I Per-operand latency
I Per-operand port list
I Defined with TableGen (using the Processor Resource Model)

I Used extensively in the scheduler
I When creating the instruction dependency graph
I When packing instructions into bundles

struct SHAVEResUse {
unsigned Latency; // Cycle where the resources are used
BitField ResourceMask; // FUs and ports

};

// Resources used by MI for each cycle of operation
bool GetSchedResources(MachineInstr *MI, vector<SHAVEResUse> &Uses);
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SHAVE HAZARD RECOGNIZER

I Answers queries from the scheduler
I ”Can this instruction be scheduled in that cycle?”
I ”Will these two instructions conflict?”

I Keeps track of already scheduled instructions
I Scoreboard approach
I Cycle table describes which resources (FUs, ports, ...) are used
I Two instructions in the same cycle cannot share resources
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MOVING INSTRUCTIONS ACROSS FUS

I Some FUs have overlapping functionality
I Memory instructions: LSU0 ↔ LSU1
I Some arithmetic instructions: IAU ↔ SAU
I Some copy instructions: CMU.CP* ↔ LSU.CP

I Exploit this overlap to improve ILP
I Transform an instruction to another equivalent instruction

I Mutate instruction in-place
I Calculate new scheduling cost
I Revert changes if no scheduling improvement
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FU PARAMETERISATION

I Each LSU instruction has a ’FU’ operand
I Avoids duplicating instruction definitions in TableGen
I Scheduling information now depends on the value of this operand
I Default value, no need to specify it in DAG patterns

I Simplifies instruction mutation
I Change the operand value to move instruction across FUs

I Makes scheduling policy easier

class FUnitOp<int num> : OperandWithDefaultOps<i8, (ops (i8 num))> {
let PrintMethod = "printFUnitOperand";

}

def lsu_id : FUnitOp<8>; // Defaults to LSU1

class SHAVE_LSUInstr<dag OOL, dag IOL, string asmstr, list<dag> pat> :
SHAVEInstr<OOL, !con(IOL, (ins lsu_id:$funit)),

!strconcat("$funit", asmstr), LSU1> {
let Pattern = pat;

}
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3. OPTIMISATION RESULTS

I TSVC Benchmark
I Optimisations

I LLVM Partial Loop Unrolling
I Branch Delay Slot Filling
I Unified Early/late Scheduling

I Overall results
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TSVC BENCHMARK

I Designed to exercise vectorisation in a compiler
I Each test is a loop

I Tests are grouped into categories
I Each category exercises a different kind of loop pattern

I Result caveat
I No per-category analysis done here
I Per-category results included to show that optimisation impact

differs between patterns
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LLVM PARTIAL LOOP UNROLLING

I Runs multiple loop iterations ’at a time’
I Introduces opportunities for ILP between loop iterations
I Many FUs: significant improvements on VLIW architectures

I Pass -mllvm -unroll-allow-partial to clang
I Requires a cost model for your target
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BRANCH DELAY SLOT FILLING

I Branches have 6 delay slots on this ISA
I Delay slots are filled with NOPs
I Cost applies to every iteration of a loop

I This optimisation reduces the cost of branching
I Biggest impact on small loops with high number of iterations
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UNIFIED EARLY/LATE SCHEDULING

I Uses the same scheduler for early and late scheduling
I Tends to cluster higher-latency instructions like loads
I Gives the register allocator a better idea of register usage

I Works well in combination with loop unrolling
I Avoids dependencies between iterations, improving ILP
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OVERALL RESULTS

I Observed geomean speedup on TSVC tests:
I LLVM Partial Loop Unrolling: 1.793x
I Branch Delay Slot Filling: 1.578x
I Unified Early/late Scheduling: 1.114x
I Overall: 3.151x
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Thank you for your attention!
Questions ?

Contacts:
Erkan Diken: e.diken@tue.nl

Pierre-Andre Saulais: pierre-andre@codeplay.com
Martin J. O’Riordan: martin.oriordan@movidius.com
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