
Link-Time Optimization

on PlayStation®4

Yunzhong Gao
Sony Computer Entertainment

LLVM Dev Meeting, 28-29 Oct 2014

Last Year…
• LTO without linker

Combined bc file

llvm-link

opt

object file

llc

Output executable

PS4TM

linker
PS4TM linker

Input bc files Input object files

• LOTS of contribution from the community

• Thank you!

• Reference: see Rafael’s talk at Euro LLVM 2014

Past work in LTO…

In the Linker…
• Proprietary linker

In the Linker…
• Proprietary linker

• Uses tools/LTO interface
• lto_module_is_object_file()

Input bc files Input object files

In the Linker…

Input bc files Input object files

In the Linker…

Scan Phase

for each bc file:
• lto_module_get_symbol_name()

• lto_module_get_symbol_attribute()

• lto_module_get_deplib()

• lto_codegen_add_module()

Input bc files Input object files

Scan Phase

In the Linker…

Input bc files Input object files

Scan Phase

In the Linker…

Compile Phase

• lto_codegen_add_must_preserve_symbol()

• lto_codegen_compile_to_file()

Input bc files Input object files

Scan Phase

Compile Phase

In the Linker…

Input bc files Input object files

Object file

Scan Phase

Compile Phase

In the Linker…

Input bc files Input object files

Object file

Scan Phase

Compile Phase

Output executable

Usual linking steps Usual linking steps

In the Linker…

Whose Bug?

Clearly, this is a bug

in the LTO library.

No, CLEARLY, it is

a linker problem.

Whose Bug?

wrapper

LTO.dll

Linker

 commands

 results

Whose Bug?

wrapper

Linker

 commands

 results

Cannot select: 0x2e329d0:

v4i32 = …

Whose Bug?

wrapper

LTO.dll

Linker

 commands

 results

Whose Bug?

wrapper

LTO.dll

 results

A list of

commands

stdout

Evaluation

Results on some PS4TM game titles:

Game#1 Game#2 Game#3 Game#4 Game#5

Run-Time

Performance

Improved

3.39%

Improved

1.43%

Improved

9%

Improved

6.11%

Improved

6%

Evaluation

Results on some PS4TM game titles:

Game#1 Game#2 Game#3 Game#4 Game#5

Run-Time

Performance

Improved

3.39%

Improved

1.43%

Improved

9%

Improved

6.11%

Improved

6%

• Inliner

• Internalize Global Symbols

• Inter-Procedural Sparse Conditional Constant Propagation

Evaluation

Results on some PS4TM game titles:

Game#1 Game#2 Game#3 Game#4 Game#5

Executable

Size

Increased

0.242%

Increased

0.539%

Increased

2%

Decreased

11.8%

Increased

2.06%

Evaluation

Results on some PS4TM game titles:

(without debug info)

Game#1 Game#2 Game#3 Game#4 Game#5

Build Time

(LTO vs non-LTO)

4x 3x 5x 2.5x 10x

Related Work

Related Work

• LTO with debug info: memory usage and build time

Related Work

• LTO with debug info: memory usage and build time

• Versioning of bc files

Related Work

• LTO with debug info: memory usage and build time

• Versioning of bc files

• Further performance improvement in LTO:
• Move some optimization passes from compiler to LTO?

(e.g. loop-unroll, vectorizer)

