
Custom Hardware State-Machines

and Datapaths –

Using LLVM to Generate FPGA

Accelerators

Alan Baker

Altera Corporation

FPGAs are Awesome

 Fully Configurable Architecture

 Low-Power

 Customizable I/O

2

FPGA Design Hurdles

 Traditional FPGA design entry done in hardware

description languages (HDL)
 e.g. Verilog or VHDL

 HDL describe the register transfer level (RTL)

 Programmer is responsible for describing all the hardware and its behaviour
in every clock cycle

 The hardware to describe a relatively small program can take months to
implement

 Testing is difficult

 Far fewer hardware designers than software designers

3

Simpler Design Entry

 Use a higher level of abstraction
 Easier to describe an algorithm in C than Verilog

 Increases productivity

 Simpler to test and verify

 Increases the size of the developer pool

 Sounds promising, but how can we map a higher level

language to an FPGA?

4

Our Vision

 Leverage the software community’s resources

 LLVM is a great compiler framework
 Mature

 Robust

 Well architected

 Easy to modify and extend

 Same IR for different input languages

 We modify LLVM to generate Verilog
 Implemented a custom backend target

5

OpenCL

 Our higher level language

 Hardware agnostic compute language
 Invented by Apple

 2008 Specification Donated to Khronos Group and Khronos
Compute Working Group was formed

6

 What does OpenCL give us?
 Industry standard programming model
 Aimed at heterogeneous compute

acceleration
 Functional portability across platforms

OpenCL Conformance

 You must pass conformance to claim OpenCL support
 Over 8000 tests
 Only one FPGA vendor has passed conformance

7

The BIG Idea behind OpenCL

 OpenCL execution model …
 Define N-dimensional computation domain

 Execute a kernel at each point in computation domain

void

trad_mul(int n,

 const float *a,

 const float *b,

 float *c)

{

 int i;

 for (i=0; i<n; i++)

 c[i] = a[i] * b[i];

}

Traditional loops
kernel void

dp_mul(global const float *a,

 global const float *b,

 global float *c)

{

 int id = get_global_id(0);

 c[id] = a[id] * b[id];

} // execute over “n” work-items

Data Parallel OpenCL

FPGAs vs CPUs

 FPGAs are dramatically different than CPUs

 Massive fine-grained parallelism

 Complete configurability

 Huge internal bandwidth

 No callstack

 No dynamic memory allocation

 Very different instruction costs

 No fixed number of program registers

 No fixed memory system

9

Targeting an Architecture

 In a CPU, the program is mapped to a fixed architecture

 In an FPGA, there is NO fixed architecture

 The program defines the architecture

 Instead of the architecture constraining the program,

the program is constrained by the available resources

10

Datapath Architecture

FPGA datapath ~ Unrolled CPU hardware

11

B

A

A
ALU

A simple 3-address CPU

12

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Load immediate value into register

13

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Load memory value into register

14

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Store register value into memory

15

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Add two registers, store result in register

16

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Multiply two registers, store result in register

17

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

A simple program

 Mem[100] += 42 * Mem[101]

 CPU instructions:

18

R0 Load Mem[100]

R1 Load Mem[101]

R2 Load #42

R2 Mul R1, R2

R0 Add R2, R0

Store R0 Mem[100]

CPU activity, step by step

19

A

A

A

A

A

R0 Load Mem[100]

R1 Load Mem[101]

R2 Load #42

R2 Mul R1, R2

R0 Add R2, R0

Store R0 Mem[100]
A

Time

Unroll the CPU hardware…

20

A

A

A

A

A

R0 Load Mem[100]

R1 Load Mem[101]

R2 Load #42

R2 Mul R1, R2

R0 Add R2, R0

Store R0 Mem[100]
A

Space

… and specialize by position

21

A

A

A

A

A

R0 Load Mem[100]

R1 Load Mem[101]

R2 Load #42

R2 Mul R1, R2

R0 Add R2, R0

Store R0 Mem[100]
A

1. Instructions are fixed.

Remove “Fetch”

… and specialize

22

A

A

A

A

A

R0 Load Mem[100]

R1 Load Mem[101]

R2 Load #42

R2 Mul R1, R2

R0 Add R2, R0

Store R0 Mem[100]
A

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

… and specialize

23

A

A

A

A

A

R0 Load Mem[100]

R1 Load Mem[101]

R2 Load #42

R2 Mul R1, R2

R0 Add R2, R0

Store R0 Mem[100]
A

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

… and specialize

24

R0 Load Mem[100]

R1 Load Mem[101]

R2 Load #42

R2 Mul R1, R2

R0 Add R2, R0

Store R0 Mem[100]

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly!

And propagate state.

… and specialize

25

R0 Load Mem[100]

R1 Load Mem[101]

R2 Load #42

R2 Mul R1, R2

R0 Add R2, R0

Store R0 Mem[100]

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly!

And propagate state.

5. Remove dead data.

26

Fundamental Datapath

Instead of a register

file, live data is carried

through register

stages like a pipelined

CPU instruction

Live ranges define the

amount of data carried

at each register stage

Optimize the Datapath

27

R0 Load Mem[100]

R1 Load Mem[101]

R2 Load #42

R2 Mul R1, R2

R0 Add R2, R0

Store R0 Mem[100]

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly!

And propagate state.

5. Remove dead data.

6. Reschedule!

FPGA datapath = Your algorithm, in silicon

28

Load Load

Store

42

Data parallel kernel

29

__kernel void
sum(__global const float *a,
__global const float *b,
__global float *answer)
{
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
}

float *a =

float *b =

float *answer =

0 1 2 3 4 5 6 7

7 6 5 4 3 2 1 0

7 7 7 7 7 7 7 7

__kernel void sum(…);

Example Datapath for Vector Add

 On each cycle the portions of the

datapath are processing different

threads

 While thread 2 is being loaded,

thread 1 is being added, and

thread 0 is being stored

30

Load Load

Store

0 1 2 3 4 5 6 7

8 work items for vector add example

+

Work item IDs

Example Datapath for Vector Add

 On each cycle the portions of the

datapath are processing different

threads

 While thread 2 is being loaded,

thread 1 is being added, and

thread 0 is being stored

31

Load Load

Store

0
1 2 3 4 5 6 7

8 work items for vector add example

+

Work item IDs

Example Datapath for Vector Add

 On each cycle the portions of the

datapath are processing different

threads

 While thread 2 is being loaded,

thread 1 is being added, and

thread 0 is being stored

32

Load Load

Store

0

1
2 3 4 5 6 7

8 work items for vector add example

+

Work item IDs

Example Datapath for Vector Add

 On each cycle the portions of the

datapath are processing different

threads

 While thread 2 is being loaded,

thread 1 is being added, and

thread 0 is being stored

33

Load Load

Store

1

2

3 4 5 6 7

8 work items for vector add example

+

0

Work item IDs

Example Datapath for Vector Add

 On each cycle the portions of the

datapath are processing different

threads

 While thread 2 is being loaded,

thread 1 is being added, and

thread 0 is being stored

34

Load Load

Store

2

3

4 5 6 7

8 work items for vector add example

+

0

1

Silicon used efficiently at steady-state

Work item IDs

High Level Datapath Generation

Compiler Flow

Compiler Flow

36

AOC

FPGA

Programming File
kernel void
sum(global float *a,
 global float *b,
 global float *c)
{
 int gid = get_global_id(0);
 c[gid] = a[gid] + b[gid];
}

Source Code Altera Offline Compiler

LLC

OPT

Clang

Verilog

Design File

Compiler Flow

37

AOC

FPGA

Programming File
kernel void
sum(global float *a,
 global float *b,
 global float *c)
{
 int gid = get_global_id(0);
 c[gid] = a[gid] + b[gid];
}

Source Code Altera Offline Compiler

LLC

OPT

Clang

Verilog

Design File

Frontend

Parses OpenCL extensions and intrinsics to

produce LLVM IR

Clang

Compiler Flow

38

AOC

FPGA

Programming File
kernel void
sum(global float *a,
 global float *b,
 global float *c)
{
 int gid = get_global_id(0);
 c[gid] = a[gid] + b[gid];
}

Source Code Altera Offline Compiler

LLC

OPT

Clang

Verilog

Design File

Frontend

Parses OpenCL extensions and intrinsics to

produce LLVM IR

OPT

Middle end

Clang –O3 optimizations followed by

numerous custom passes to target the FPGA

architecture

Compiler Flow

39

AOC

FPGA

Programming File
kernel void
sum(global float *a,
 global float *b,
 global float *c)
{
 int gid = get_global_id(0);
 c[gid] = a[gid] + b[gid];
}

Source Code Altera Offline Compiler

LLC

OPT

Clang

Verilog

Design File

Frontend

Parses OpenCL extensions and intrinsics to

produce LLVM IR

LLC

Backend

Creates and schedules an elastic pipelined

datapath and produces Verilog HDL

Compiler Flow

40

AOC

FPGA

Programming File
kernel void
sum(global float *a,
 global float *b,
 global float *c)
{
 int gid = get_global_id(0);
 c[gid] = a[gid] + b[gid];
}

Source Code Altera Offline Compiler

LLC

OPT

Clang

Verilog

Design File

LLVM IR is used to describe a custom

architecture specific to the program

Dealing with Resource Constraints

Branch Conversion

41

Branch Conversion Example

42

Branch

A: True

B: False

C

Branch Conversion Example

1. Determine control flow

to conditionally

executed basic blocks

43

Branch

A: True

B: False

C

Branch Conversion Example

1. Determine control flow

to conditionally

executed basic blocks

2. Predicate instructions
 A is predicated if the branch

was false and vice-versa

44

Branch

A: True

B: False

C

Branch Conversion Example

1. Determine control flow

to conditionally

executed basic blocks

2. Predicate instructions
 A is predicated if the branch

was false and vice-versa

3. Combine A and B
 Branch is now unconditional

 PHIs in C become select
instructions

45

Branch

C

A/B

Branch Conversion Example

1. Determine control flow

to conditionally

executed basic blocks

2. Predicate instructions
 A is predicated if the branch

was false and vice-versa

3. Combine A and B
 Branch is now unconditional

 PHIs in C become select
instructions

4. Simplify the CFG
 Merges remaining blocks

46

All

Logic

Branch Conversion

 Squeezes the majority of the CFG into one basic block

 Saves significant amounts of area

 Increased instruction count in the basic block does not

adversely affect performance

47

Improving Performance of

Individual Threads

Loop Pipelining

OpenCL Task

 Kernel operates on a single thread

 Data for each iteration depends on the previous

iteration

 Loop carried dependency bottlenecks performance

49

__kernel void
accumulate(__global float *a,
 __global float *b,
 int n)
{
 for (int i=1; i<n; ++i)
 b[i] = b[i-1] + a[i];
}

Loop Carried Dependencies

 Loop-carried dependency: one iteration of the loop
depends upon the results of another iteration of the
loop

 The value of state in iteration 1 depends on the value
from iteration 0

 Similarly, iteration 2 depends on the value from iteration
1, etc

50

kernel void state_machine(ulong n)
{
 t_state_vector state = initial_state();
 for (ulong i=0; i<n; i++) {
 state = next_state(state);
 unit y = process(state);
 // more work…
 }
}

Loop Carried Dependencies

 To achieve acceleration, we can pipeline each iteration

of a loop containing loop carried dependencies
 Analyze any dependencies between iterations

 Schedule these operations

 Launch the next iteration as soon as possible

51

At this point, we can

launch the next

iteration

kernel void state_machine(ulong n)
{
 t_state_vector state = initial_state();
 for (ulong i=0; i<n; i++) {
 state = next_state(state);
 unit y = process(state);
 // more work…
 }
}

Loop Pipelining Example

 No Loop Pipelining

52

i0

i1

i2

 With Loop Pipelining

i0

i1

i2

i3

i4

Looks almost

like ND-

range thread

execution! C
lo

c
k
 C

y
c
le

s

C
lo

c
k
 C

y
c
le

s

No Overlap of Iterations
Finishes Faster because Iterations

Are Overlapped

Pipelined Threads vs. Loop Pipelining

 So what’s the difference?

 Loop Pipelining enables Pipeline Parallelism AND the

communication of state information between iterations.

53

t0

t1

t2

t3

t4

Pipelined threads

launch 1 thread per

clock cycle in

pipelined fashion

i0

i1

i2

i3

i4

Loop

dependencies

may not be

resolved in 1

clock cycle

Pipelined Threads Loop Pipelining

Accumulator Datapath

 A new iteration can be launched each cycle

 Each iteration still takes multiple cycles to complete,

but subsequent iterations are not bottlenecked

54

__kernel void
accumulate(__global float *a,
 __global float *b,
 int n)
{
 for (int i=1; i<n; ++i)
 b[i] = b[i-1] + a[i];
}

Load

Store

+

Accumulator Datapath

 A new iteration can be launched each cycle

 Each iteration still takes multiple cycles to complete,

but subsequent iterations are bottlenecked

55

__kernel void
accumulate(__global float *a,
 __global float *b,
 int n)
{
 for (int i=1; i<n; ++i)
 b[i] = b[i-1] + a[i];
}

Load

Store

+

i=0

Accumulator Datapath

 A new iteration can be launched each cycle

 Each iteration still takes multiple cycles to complete,

but subsequent iterations are bottlenecked

56

__kernel void
accumulate(__global float *a,
 __global float *b,
 int n)
{
 for (int i=1; i<n; ++i)
 b[i] = b[i-1] + a[i];
}

Load

Store

+

i=0

i=1

Accumulator Datapath

 A new iteration can be launched each cycle

 Each iteration still takes multiple cycles to complete,

but subsequent iterations are bottlenecked

57

__kernel void
accumulate(__global float *a,
 __global float *b,
 int n)
{
 for (int i=1; i<n; ++i)
 b[i] = b[i-1] + a[i];
}

Load

Store

+
i=0

i=1

i=2

Dependence Analysis

 Has profound effect on Loop Pipelining
 Can lead to difference in performance of more than 100x

 Significant effort spent to improve dependence analysis
 Especially loop-carried dependence analysis

 Added complex range analysis to help

 Uses knowledge of our specialized hardware and

programming model

 Never good enough!

58

LLVM Issues/Wishlist

59

LLVM Issues

 Intrinsics don’t support structs
 We extended CallInst for our intrinsics

 Module pass managers running every analysis on every

function when only requesting a single function

 On-the-fly pass manager not inheriting analyses

 Ran into several scaling problems with LLVM passes
 Often due to significant loop unrolling and inlining

 Loop representation
 Well formed loops are extremely important to us

 Some optimizations introduce extra loops

 while(1) with no return is useful to us

60

LLVM Wishlist

 Conditional preservation of analyses

 Windows debug support

 Improved dependence analysis

61

Thank You Thank You Thank You

References

 Altera OpenCL Example Designs
http://www.altera.com/support/examples/opencl/opencl.html

 Altera OpenCL Best Practices Guide
http://www.altera.com/literature/hb/opencl-sdk/aocl_optimization_guide.pdf

 Stratix V Overview
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp

 Cyclone V Overview
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp

 Stratix V ALM
www.altera.com/literature/hb/stratix-v/stx5_51002.pdf

http://www.altera.com/support/examples/opencl/opencl.html
http://www.altera.com/support/examples/opencl/opencl.html
http://www.altera.com/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
http://www.altera.com/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
http://www.altera.com/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
http://www.altera.com/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp
http://www.altera.com/literature/hb/stratix-v/stx5_51002.pdf
http://www.altera.com/literature/hb/stratix-v/stx5_51002.pdf
http://www.altera.com/literature/hb/stratix-v/stx5_51002.pdf

