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When we compared LTO -Ofast vs -Ofast performance we saw 10% degradation 
in spec2000/crafty benchmark

Analysis revealed the impact of the following LLVM passes

− Inliner, LICM, and GVN

Extra spill code and additional execution time in Evaluate() and Swap()

Increased register pressure

This scenario is typical for other compilers too

− When enabling a new optimization, or increasing the optimization level

Motivation
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Register pressure has been a known problem for compiler/performance engineers

− Mismatch between the infinite number of virtual registers and fixed number of physical registers

A lot of work to handle register pressure (RP) at machine-level IR: register allocator, 
scheduler, and related passes

− Rematerialization (Briggs, 1992)

− Fighting register pressure in GCC (Makarov, 2004)

− Prematerialization (Baev, Hank, Gross, 2006)

− Region-based register allocation (Baev, 2009)

− Register pressure-aware scheduling (Touati, 2001; Govindarajan, 2003)

− LLVM register pressure tracking and RP-aware scheduling (Trick, 2012)

Related work
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Some work at higher-lever IR: LICM, PRE, and loop transformations

− Register pressure sensitive redundancy elimination (Gupta, Bodik, 1999)

− Register pressure guided unroll-and-jam (Ma, Carr, 2008)

− Model-based framework: an approach for profit-driven optimization (Zhao, Childers, Soffa, 2005)

− Inlining – most papers acknowledge the problem of register pressure but do not address it 
directly (Zhao, Amaral, 2003; Chakrabarty, Liu, 2006)

Handling register pressure at a single place in the compiler – e.g. in register 
allocator or scheduler – is usually not enough

This talk will focus on middle-end, target-independent optimizations

Related work (cont.)
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At a given program point

− the number of overlapping live ranges at that point

For a basic block(BB)/loop/function 

− the highest register pressure over all program points in the BB/loop/function

For a BB/loop (in this work)

− the number of liveins for the BB/loop

Integer RP, floating-point RP, predicate RP, etc.

It is an approximation

− Sources of approximation: register promotion of memory, calls, register pairs, etc.

− Tradeoff between precision and compile-time, e.g. better precision requires data-flow analysis

Virtual register pressure
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Analyze a pass and its components w.r.t. register pressure

− Study the code, collect statistics

Add a measure of register pressure to control the component(s) with a high 
impact

Allow a component/pass to be invoked multiple times

Include a comparison with the number of hardware registers of the 
corresponding type for the target processor

Our approach 
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Loop-level pass with three components

− Sinking code

− Hoisting code

− Promotion of memory locations

Register pressure analysis of LLVM LICM pass
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Loop-level pass with three components

− Sinking code – not likely to impact RP (# liveins for the loop)

Register pressure analysis of LLVM LICM pass
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Loop-level pass with three components

− Sinking code – not likely to substantially impact RP

− Hoisting code - may impact RP

Instructions to be hoisted and the impact on RP for the loop
%528 = load i64* @rank_mask.1

%527 = load i64* getelementptr inbounds (%struct.CHESS_POSITION.86* @search, i32 0, i32 7)

Both instructions increase RP (# liveins) by 1

%tobool1418 = icmp ne i64 %and1417, 0   // assume %and1417 is only used in this instruction

No change in RP

%and1417 = and i64 %518, %517   // assume %518 and %517 are only used in this instruction  

Decrease RP by 1

Register pressure analysis of LLVM LICM pass
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Loop-level pass with three components

− Sinking code – not likely to impact RP (# liveins for the loop)

− Hoisting code - may impact RP

− Promotion of memory locations – not likely to substantially increase RP

Register pressure analysis of LLVM LICM pass

y = ld [a]

y1 = y + Expr

st [a] = y1

a

y = ld [a]

y1 = phi (y, y2)

y2 = y1 + Expr

st [a] = y1

y  // removed a, but added y to liveins
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int MaxLIs // Max number of new liveins allowed for hoisting for the loop 

int NumLIs // Current number of new liveins for the loop

estimateRegisterPressure(Loop *L) {

unsigned MaxLiveIns = TTI->getNumberOfRegisters(false)

Set LiveIns

Iterate over all BBs in L

Iterate over all instructions in BB

Iterate over source operands in Instruction 

if (Operand is of integer or pointer type) 

if (OperandValue is defined outside L) || (OperandValue is argument or global variable))

LiveIns.insert(OperandValue)

NumLIs = 0

if (LiveIns.cardinality >= MaxLiveIns)

MaxLIs = 0

else

MaxLIs = MaxLiveIns - LiveIns.cardinality

}

// also, provision for user-defined MaxLiveIns (not shown)

Implementation of LICM RP heuristic 
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bool doesReducePressure(Instruction &I, Loop *L, int &NumLiveInReduce) {

NumLiveInReduce = -1  // start with -1 due to hoisting I’s destination operand 

Iterate over all source operands of I

if (Operand is of integer or pointer type) 

if ((OperandValue is defined outside L) || (OperandValue is argument or global variable))

if (OperandValue has one use) NumLiveInReduce++

if (NumLiveInReduce >= 1) return true

else return false

}

hoist(Instruction &I) {

bool ReducePressure = doesReducePressure(I, L, NumLiveInReduced)

if (NumLIs >= MaxLIs) && !ReducePressure) return // skip hoisting

. . .

hoist I

NumLIs -= NumLiveInReduced // keep track of loop’s liveins

}

Implementation of LICM RP heuristic (cont.) 
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Function-level pass with two major components

GVN part

− processBlock() -> processInstruction() 

− SimplifyInstruction

− processLoad() -> processNonLocalLoad

− processBranch

− processSwitch

− ProcessOtherInstruction

PRE part

− Simple local PRE on diamond control-flow patterns

Register pressure analysis of LLVM GVN pass
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GVN mostly operates on BB basis

Estimate RP for the basic block enclosing the load

− estimateRegisterPressure(BB)

Estimate RP for the loop enclosing the load

− estimateRegisterPressure(Loop) // similar to the version in LICM

Using loop-based RP performs better

if (estimateRegisterPressure(Loop) >= TTI->getNumberOfRegisters(false))

skip processing/promoting this load

Implementation GVN RP heuristic 
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With QC LLVM compiler - on Nexus4 Android devices, ARMv7, thumb mode  

Good improvements also in ARM mode and for Hexagon processors, for both 
-Ofast and LTO optimization levels

Performance evaluation of RP heuristics

Benchmark
Speedup with LICM-

RP over LTO (%)

Speedup with GVN-

RP over LTO (%)

Speedup with both 

over LTO (%)

ammp 1.7 0.5 1.6

bzip2 -0.8 -2.1 -1.5

crafty 2.5 1.4 4.3

equake 0.4 1.6 1.9

mesa 9.1 3.8 5.7

twolf 3.1 3.1 3.0

vpr 2.2 1.6 2.4
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Calculate maxRP for each function traversing the call graph bottom-up

− At each call site add the callee’s RP to the current RP of the caller

Add RP at call site to the goodness factor (ranking) of the call site

− In the denominator - as a cost

− Add extra cost if RP exceeds the number of hardware registers for the target

Likely no need to update maxRP for a function after inlining any of call sites 
within the function

Controlling RP in Inliner (future work)
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The register pressure problem will likely to stay

− Newer generation processors feature more registers, however compiler engineers quickly 
make the extra registers insufficient

We presented a general approach and specific heuristics for controlling register 
pressure in LLVM LICM, GVN, and Inliner passes

− Will upstream RP patches if there is interest

− Unroller is another candidate for RP tuning in the middle-end

Compiler optimizations should be designed to take into account register pressure

− Simple heuristics are good in many cases

As a community, continue improving RP in machine-level passes

− Compute and report the sum of weighted spills when profile information is available

Summary
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