
1

Controlling Virtual Register
Pressure in LLVM Middle-End

Ivan Baev

2

Motivation

Related work

Register pressure background

LLVM LICM

LLVM GVN

Performance results

Future work: LLVM Inliner

Summary

Outline

3

When we compared LTO -Ofast vs -Ofast performance we saw 10% degradation
in spec2000/crafty benchmark

Analysis revealed the impact of the following LLVM passes

− Inliner, LICM, and GVN

Extra spill code and additional execution time in Evaluate() and Swap()

Increased register pressure

This scenario is typical for other compilers too

− When enabling a new optimization, or increasing the optimization level

Motivation

4

Register pressure has been a known problem for compiler/performance engineers

− Mismatch between the infinite number of virtual registers and fixed number of physical registers

A lot of work to handle register pressure (RP) at machine-level IR: register allocator,
scheduler, and related passes

− Rematerialization (Briggs, 1992)

− Fighting register pressure in GCC (Makarov, 2004)

− Prematerialization (Baev, Hank, Gross, 2006)

− Region-based register allocation (Baev, 2009)

− Register pressure-aware scheduling (Touati, 2001; Govindarajan, 2003)

− LLVM register pressure tracking and RP-aware scheduling (Trick, 2012)

Related work

5

Some work at higher-lever IR: LICM, PRE, and loop transformations

− Register pressure sensitive redundancy elimination (Gupta, Bodik, 1999)

− Register pressure guided unroll-and-jam (Ma, Carr, 2008)

− Model-based framework: an approach for profit-driven optimization (Zhao, Childers, Soffa, 2005)

− Inlining – most papers acknowledge the problem of register pressure but do not address it
directly (Zhao, Amaral, 2003; Chakrabarty, Liu, 2006)

Handling register pressure at a single place in the compiler – e.g. in register
allocator or scheduler – is usually not enough

This talk will focus on middle-end, target-independent optimizations

Related work (cont.)

6

At a given program point

− the number of overlapping live ranges at that point

For a basic block(BB)/loop/function

− the highest register pressure over all program points in the BB/loop/function

For a BB/loop (in this work)

− the number of liveins for the BB/loop

Integer RP, floating-point RP, predicate RP, etc.

It is an approximation

− Sources of approximation: register promotion of memory, calls, register pairs, etc.

− Tradeoff between precision and compile-time, e.g. better precision requires data-flow analysis

Virtual register pressure

7

Analyze a pass and its components w.r.t. register pressure

− Study the code, collect statistics

Add a measure of register pressure to control the component(s) with a high
impact

Allow a component/pass to be invoked multiple times

Include a comparison with the number of hardware registers of the
corresponding type for the target processor

Our approach

8

Loop-level pass with three components

− Sinking code

− Hoisting code

− Promotion of memory locations

Register pressure analysis of LLVM LICM pass

9

Loop-level pass with three components

− Sinking code – not likely to impact RP (# liveins for the loop)

Register pressure analysis of LLVM LICM pass

10

Loop-level pass with three components

− Sinking code – not likely to substantially impact RP

− Hoisting code - may impact RP

Instructions to be hoisted and the impact on RP for the loop
%528 = load i64* @rank_mask.1

%527 = load i64* getelementptr inbounds (%struct.CHESS_POSITION.86* @search, i32 0, i32 7)

Both instructions increase RP (# liveins) by 1

%tobool1418 = icmp ne i64 %and1417, 0 // assume %and1417 is only used in this instruction

No change in RP

%and1417 = and i64 %518, %517 // assume %518 and %517 are only used in this instruction

Decrease RP by 1

Register pressure analysis of LLVM LICM pass

11

Loop-level pass with three components

− Sinking code – not likely to impact RP (# liveins for the loop)

− Hoisting code - may impact RP

− Promotion of memory locations – not likely to substantially increase RP

Register pressure analysis of LLVM LICM pass

y = ld [a]

y1 = y + Expr

st [a] = y1

a

y = ld [a]

y1 = phi (y, y2)

y2 = y1 + Expr

st [a] = y1

y // removed a, but added y to liveins

12

int MaxLIs // Max number of new liveins allowed for hoisting for the loop

int NumLIs // Current number of new liveins for the loop

estimateRegisterPressure(Loop *L) {

unsigned MaxLiveIns = TTI->getNumberOfRegisters(false)

Set LiveIns

Iterate over all BBs in L

Iterate over all instructions in BB

Iterate over source operands in Instruction

if (Operand is of integer or pointer type)

if (OperandValue is defined outside L) || (OperandValue is argument or global variable))

LiveIns.insert(OperandValue)

NumLIs = 0

if (LiveIns.cardinality >= MaxLiveIns)

MaxLIs = 0

else

MaxLIs = MaxLiveIns - LiveIns.cardinality

}

// also, provision for user-defined MaxLiveIns (not shown)

Implementation of LICM RP heuristic

13

bool doesReducePressure(Instruction &I, Loop *L, int &NumLiveInReduce) {

NumLiveInReduce = -1 // start with -1 due to hoisting I’s destination operand

Iterate over all source operands of I

if (Operand is of integer or pointer type)

if ((OperandValue is defined outside L) || (OperandValue is argument or global variable))

if (OperandValue has one use) NumLiveInReduce++

if (NumLiveInReduce >= 1) return true

else return false

}

hoist(Instruction &I) {

bool ReducePressure = doesReducePressure(I, L, NumLiveInReduced)

if (NumLIs >= MaxLIs) && !ReducePressure) return // skip hoisting

. . .

hoist I

NumLIs -= NumLiveInReduced // keep track of loop’s liveins

}

Implementation of LICM RP heuristic (cont.)

14

Function-level pass with two major components

GVN part

− processBlock() -> processInstruction()

− SimplifyInstruction

− processLoad() -> processNonLocalLoad

− processBranch

− processSwitch

− ProcessOtherInstruction

PRE part

− Simple local PRE on diamond control-flow patterns

Register pressure analysis of LLVM GVN pass

15

GVN mostly operates on BB basis

Estimate RP for the basic block enclosing the load

− estimateRegisterPressure(BB)

Estimate RP for the loop enclosing the load

− estimateRegisterPressure(Loop) // similar to the version in LICM

Using loop-based RP performs better

if (estimateRegisterPressure(Loop) >= TTI->getNumberOfRegisters(false))

skip processing/promoting this load

Implementation GVN RP heuristic

16

With QC LLVM compiler - on Nexus4 Android devices, ARMv7, thumb mode

Good improvements also in ARM mode and for Hexagon processors, for both
-Ofast and LTO optimization levels

Performance evaluation of RP heuristics

Benchmark
Speedup with LICM-

RP over LTO (%)

Speedup with GVN-

RP over LTO (%)

Speedup with both

over LTO (%)

ammp 1.7 0.5 1.6

bzip2 -0.8 -2.1 -1.5

crafty 2.5 1.4 4.3

equake 0.4 1.6 1.9

mesa 9.1 3.8 5.7

twolf 3.1 3.1 3.0

vpr 2.2 1.6 2.4

17

Calculate maxRP for each function traversing the call graph bottom-up

− At each call site add the callee’s RP to the current RP of the caller

Add RP at call site to the goodness factor (ranking) of the call site

− In the denominator - as a cost

− Add extra cost if RP exceeds the number of hardware registers for the target

Likely no need to update maxRP for a function after inlining any of call sites
within the function

Controlling RP in Inliner (future work)

18

The register pressure problem will likely to stay

− Newer generation processors feature more registers, however compiler engineers quickly
make the extra registers insufficient

We presented a general approach and specific heuristics for controlling register
pressure in LLVM LICM, GVN, and Inliner passes

− Will upstream RP patches if there is interest

− Unroller is another candidate for RP tuning in the middle-end

Compiler optimizations should be designed to take into account register pressure

− Simple heuristics are good in many cases

As a community, continue improving RP in machine-level passes

− Compute and report the sum of weighted spills when profile information is available

Summary

19

Zhaoshi Zheng, Balaram Makam, Yin Ma, Taylor Simpson, QuIC

Acknowledgements

Any questions?

