
Passes in LLVM



Passes in LLVM
Part 1: Introduction and Concepts



Sorry, no cat photos, memes, or dragons.
We do have few WAT moments though...

You may be expecting...



Ok, one dragon.



● What is a “pass” in LLVM really?
● How do I decide what kind of pass my pass 

should be?
● What can my pass do? What can’t it do?
● What passes does LLVM run over my code?
● Where should I run my pass within the 

optimizer?

Motivating questions



What is a pass in LLVM?



An operation on a unit of IR.

● Could mutate the IR
● Could compute something about the IR
● It could even be a boat



What units of IR?

● Modules
● Functions
● Basic blocks?
● Instructions?

We also have a fake, a liar, and a cheat...



The SCC pass is a fake.

● No representational model for the call graph
● Instead, LLVM computes the call graph by 

analyzing call instructions
● The unit isn’t really just the SCC

○ Everything above (callers) or below (callees) the 
SCC in the SCC DAG is included

○ But only things below (callees) can be mutated (we’ll 
come back to this…)



The Loop pass is a liar.

Mark him well, for he will act outside his scope.
● The idea is to operate on a particular layer of 

a loop nest.
● Actually modifies inner loops (OK)
● And modifies outer loops (less OK)
● And modifies the outer function (Yikes!)



The Immutable pass is a cheat.

● Examples:
○ The old DataLayoutPass
○ Basic alias analysis

● The desired behavior isn’t supported by the 
existing pass implementation
○ So cheat by defining away the actual unit of IR so 

that no part of the implementation applies?
● Still, fundamentally, tied to a module of IR!



(but fakes, liars, and cheats are really 
useful…)



Analysis Passes

Compute some higher-order information about 
the unit of IR without mutating it.
● The pass can be thought of as producing a 

result which can then be queried.
● Example: a DominatorTree is produced by 

running an analysis pass over a function.



Analysis Passes

● One analysis pass may use another analysis 
pass’s result to compute its result

● Forms a dependency graph
● Can always satisfy this (baring cycles) 

because the IR isn’t mutated, so results 
remain valid



Analysis Passes

● All analysis pass results are cacheable and 
only invalidated when the unit of IR is 
mutated.

Leads to the other form passes take...



Transformation Passes

Transform a unit of IR in some way.
● LLVM operates in-place, so no “result”
● All passes must leave the IR in a valid state
● Can depend on analysis pass results
● Can preserve analysis pass results even 

while transforming IR
○ Unless explicitly preserved, the default is to 

invalidate analysis results conservatively



Transformation Passes

● Cannot depend on other transformation 
passes!
○ Forms a new, sub-set IR, which is problematic.
○ How do you resolve two such dependencies? Only 

one can come last…
○ Causes rampant re-running of invalidated analyses

Yet, we do this today. =/ It’s a pretty big wart.



How do passes combine?
Not functions, so no functional composition...



● Running multiple passes over a unit of IR
○ A function pass which runs several other function 

passes
● Decomposing a unit of IR into smaller units

○ A module pass that runs a function pass over each 
function in the module

These are somewhat conflated in the current 
implementation.

Two dimensions of pass aggregation



PassManagerBuilder

● Provides canned aggregations of passes
○ Different use cases modeled
○ Some pluggable interfaces for extensions
○ Exposes primary coarse grained parameters used 

across frontends
● Used by Clang ‘-O*’ flags, opt ‘-O*’ flags, etc.



The LLVM Pass Pipelines
How is it organized, and why?



1. Cleanup and canonicalization
2. Simplification and canonicalization
3. Target-specific optimization and lowering

Three phases of IR optimization:



A not-so-brief digression...

What’s the big deal with canonicalization?
● TMTOWTDI, many IR forms are equivalent
● Possible patterns of multiple operations are 

combinatorially many
● Recognizing all of them in analyses is 

infeasible
● Instead, pick a canonical form & convert to it



A not-so-brief digression...

Canonicalization is a part of optimization

LLVM does more than just canonicalize, it also 
simplifies which something different!
● Deleting dead code
● Proving equivalence of simpler forms
● etc...



Cleanup: Making frontends simpler

Primary goal: cleanup the IR from a frontend
● Form SSA - doing this in each FE is a waste
● Lower frontend-friendly intrinsics and 

patterns into analysis-friendly annotations
● Canonicalize expression forms and CFG

Not all messy IR is efficient for this...



Simplification: IPO

The call graph SCC pass manager is the outer 
framework
● Primary IPO mechanism in LLVM
● All finer grained optimization happens inside



Simplification: IPO via CGSCC

Core idea: pair-wise IPO across call edges
● Process SCCs in bottom(callee)-up order
● For every call site, callee is in-SCC or fully 

simplified and canonicalized
○ This maximizes the ability to analyze the callee



Simplification: IPO via CGSCC

Transformations here include:
● Argument promotion (deletion?)
● Call and argument attribute synthesis
● Inlining
● Core per-function simplification
● (Outlining?)
● (IP constant propagation?)



Simplification: Per-function

Primarily run within the SCC over each function
● Fairly standard scalar optimization pipeline

○ Decomposes aggregates into scalar SSA values
○ Reassociates math into canonical expression trees
○ Propagates equivalent values through memory
○ Puts loops into canonical loop form
○ Runs loop optimizations iteratively on each loop nest 

inside out



Simplification: Per-loop

Why inside-out per loop-nest?
● Phase ordering problems plague loop 

optimizations:
○ Re-arranging loop makes its result computable
○ That in turn allows deleting the loop
○ That in turn makes the enclosing loop’s result 

computable



Simplification: Per-loop

Specific loop optimizations:
● Rotate the loop structure
● Hoist invariant code
● Unswitch loop
● Canonicalize the induction variable’s form
● Unroll loops with small, constant trip counts
● (Interchange, fusion, fission, peeling, …)



Lowering: it’s still IR!

Lowering and target specific optimizations still 
produce perfectly valid LLVM IR!
● About forming patterns, not representations
● Still reuses IR analyses and utilities
● Can make things non-canonical at the end



Lowering: Loop tuning

Tunes loop structure for fast execution rather 
than easy analysis
● Widens loop to use SIMD vector unit where 

profitable and safe
● Widens loop to leverage ILP
● Unrolls loop to improve decoder loop 

detection and minimize branch penalties
● Loop strength reduction to match addressing 

modes



Lowering: Target preparation

● Form target-specific patterns that are non-
canonical

● Ease the burden of DAG building (and 
instruction selection) using intrinsic 
placeholders

“CodeGenPrep” today.



Done!
We have optimized IR!



Summary:

● Passes operate over units of IR
○ Real units and fakes, using lies and cheats

● Analysis passes are pure functions on the IR 
computing some higher-order information
○ Part of dependency graph
○ Results can be invalidated

● Transformation passes mutate their IR unit
○ Can depend on analysis passes, not transformation
○ Invalidates analysis results for that IR unit



Summary:

● PassManagerBuilder is used to produce an 
LLVM pass pipeline

● Three phases: cleanup, simplification, and 
lowering.

● Canonicalization is an important part of both 
cleanup and simplification

● Lowering loses canonicalization, but forms 
IR that is better suited to specific targets



Questions?
(And many thanks! Look forward to part 2!)


