Passes in LLVM



Passes in LLVM

Part 1: Introduction and Concepts



You may be expecting...

Sorry, no cat photos, memes, or dragons.
We do have few WAT moments though...



", " Ok, one dragon.




Motivating questions

e Whatis a “pass” in LLVM really?

e How do | decide what kind of pass my pass
should be?

e \What can my pass do? What can’t it do?

e \What passes does LLVM run over my code?

e \Where should | run my pass within the
optimizer?




What is a pass in LLVM?



An operation on a unit of IR.

e Could mutate the IR
e Could compute something about the IR
e |t could even be a boat



What units of IR?

Modules
Functions
Basic blocks?
Instructions?

We also have a fake, a liar, and a cheat...



The SCC pass is a fake.

e No representational model for the call graph

e Instead, LLVM computes the call graph by
analyzing call instructions

e The unitisn’t really just the SCC

o Everything above (callers) or below (callees) the
SCC in the SCC DAG is included

o But only things below (callees) can be mutated (we’ll
come back to this...)



The Loop pass is a liar.

Mark him well, for he will act outside his scope.

e The idea is to operate on a particular layer of
a loop nest.

e Actually modifies inner loops (OK)

e And modifies outer loops (less OK)

e And modifies the outer function (Yikes!)



The Immutable pass is a cheat.

e Examples:

o The old DataLayoutPass
o Basic alias analysis

e The desired behavior isn’t supported by the
existing pass implementation

o So cheat by defining away the actual unit of IR so
that no part of the implementation applies?

e Still, fundamentally, tied to a module of IR!



(but fakes, liars, and cheats are really
useful...)



Analysis Passes

Compute some higher-order information about
the unit of IR without mutating it.

e The pass can be thought of as producing a
result which can then be queried.

e Example: a DominatorTree is produced by
running an analysis pass over a function.



Analysis Passes

e One analysis pass may use another analysis
pass’'s result to compute its result

e Forms a dependency graph

e Can always satisfy this (baring cycles)
because the IR isn't mutated, so results
remain valid



Analysis Passes

e All analysis pass results are cacheable and
only invalidated when the unit of IR is
mutated.

Leads to the other form passes take...



Transformation Passes

Transform a unit of IR in some way.

e LLVM operates in-place, so no “result”

e All passes must leave the IR in a valid state

e Can depend on analysis pass results

e Can preserve analysis pass results even
while transforming IR

o Unless explicitly preserved, the default is to
iInvalidate analysis results conservatively



Transformation Passes

e Cannot depend on other transformation

passes!
o Forms a new, sub-set IR, which is problematic.

o How do you resolve two such dependencies? Only

one can come last...
o Causes rampant re-running of invalidated analyses

Yet, we do this today. =/ It's a pretty big wart.



How do passes combine?

Not functions, so no functional composition...



Two dimensions of pass aggregation

e Running multiple passes over a unit of IR

o A function pass which runs several other function
passes

e Decomposing a unit of IR into smaller units

o A module pass that runs a function pass over each
function in the module

These are somewhat conflated in the current
Implementation.



PassManagerBuilder

e Provides canned aggregations of passes
o Different use cases modeled
o Some pluggable interfaces for extensions

o EXxposes primary coarse grained parameters used
across frontends

e Used by Clang -O* flags, opt "-O*' flags, etc.



The LLVM Pass Pipelines

How is it organized, and why?



Three phases of IR optimization:

1. Cleanup and canonicalization
2. Simplification and canonicalization
3. Target-specific optimization and lowering



A not-so-brief digression...

What's the big deal with canonicalization?

TMTOWTDI, many IR forms are equivalent
Possible patterns of multiple operations are
combinatorially many

Recognizing all of them in analyses is
infeasible

Instead, pick a canonical form & convert to it



A not-so-brief digression...

Canonicalization is a part of optimization

LLVM does more than just canonicalize, it also
simplifies which something different!

e Deleting dead code

e Proving equivalence of simpler forms
e ecfc...



Cleanup: Making frontends simpler

Primary goal: cleanup the IR from a frontend

e Form SSA - doing this in each FE is a waste

e Lower frontend-friendly intrinsics and
patterns into analysis-friendly annotations

e Canonicalize expression forms and CFG

Not all messy IR is efficient for this...



Simplification: IPO

The call graph SCC pass manager is the outer
framework

e Primary IPO mechanism in LLVM
e All finer grained optimization happens inside



Simplification: IPO via CGSCC

Core idea: pair-wise IPO across call edges

e Process SCCs in bottom(callee)-up order
e For every call site, callee is in-SCC or fully

simplified and canonicalized
o This maximizes the ability to analyze the callee



Simplification: IPO via CGSCC

Transformations here include:

Argument promotion (deletion?)

Call and argument attribute synthesis
Inlining

Core per-function simplification
(Outlining?)

(IP constant propagation?)



Simplification: Per-function

Primarily run within the SCC over each function
e Fairly standard scalar optimization pipeline

O

O O O O

Decomposes aggregates into scalar SSA values
Reassociates math into canonical expression trees
Propagates equivalent values through memory
Puts loops into canonical loop form

Runs loop optimizations iteratively on each loop nest
inside out



Simplification: Per-loop

Why inside-out per loop-nest?
e Phase ordering problems plague loop
optimizations:

o Re-arranging loop makes its result computable
o That in turn allows deleting the loop

o That in turn makes the enclosing loop’s result
computable



Simplification: Per-loop

Specific loop optimizations:

Rotate the loop structure

-Hoist invariant code

Unswitch loop

Canonicalize the induction variable’s form
Unroll loops with small, constant trip counts
(Interchange, fusion, fission, peeling, ...)




Lowering: it’s still IR!

Lowering and target specific optimizations still
produce perfectly valid LLVM IR!

e About forming patterns, not representations
e Sltill reuses IR analyses and utilities
e Can make things non-canonical at the end



Lowering: Loop tuning

Tunes loop structure for fast execution rather
than easy analysis

e \Widens loop to use SIMD vector unit where
profitable and safe

e \Widens loop to leverage ILP

e Unrolls loop to improve decoder loop
detection and minimize branch penalties

e Loop strength reduction to match addressing
modes



Lowering: Target preparation

e Form target-specific patterns that are non-
canonical

e Ease the burden of DAG building (and
iInstruction selection) using intrinsic
placeholders

“CodeGenPrep” today.



Done!
We have optimized IR!



Summary:

e Passes operate over units of IR
o Real units and fakes, using lies and cheats

e Analysis passes are pure functions on the IR

computing some higher-order information
o Part of dependency graph
o Results can be invalidated

e Transformation passes mutate their IR unit

o Can depend on analysis passes, not transformation
o Invalidates analysis results for that IR unit



Summary:

e PassManagerBuilder is used to produce an
LLVM pass pipeline

e Three phases: cleanup, simplification, and
lowering.

e Canonicalization is an important part of both
cleanup and simplification

e |Lowering loses canonicalization, but forms
IR that is better suited to specific targets



Questions?

(And many thanks! Look forward to part 2!)



