

Fabric Engine and KL
LLVM for 3D Digital Content Creation

Andrew MacPherson – Core Engineer, Fabric Software Inc.

● Overview of Fabric Engine
● Uses of LLVM within KL
● Looking forward

The Plan

● Digital Content Creation (DCC) framework
● Standalone applications built on PySide

What is Fabric Engine?

● Digital Content Creation (DCC) framework
● Standalone application built on PySide
● Integration with existing DCC tools (Splice)

What is Fabric Engine?

● Digital Content Creation (DCC) framework
● Standalone application built on PySide
● Integration with existing DCC tools (Splice)
● In use by production studios

What is Fabric Engine?

● Many DCC tools are old
● Closed and not configurable
● Writing plugins is hard (C++) or slow (Python)
● Development held back by software limitations

Why does Fabric Engine exist?

● KL language +
dependency graph

● Host language bindings
(Python/C++)

● Simple multithreading
(MapReduce/PEX)

● Fully cross-platform
(Windows/Linux/OSX)

● Code portable among
other DCC applications

● Ease of Python with performance of threaded C++
● Write once, use anywhere
● Crash-free and updateable on the fly
● Supports extensions for integration with existing libraries
● Target selection at runtime (CPU or GPU)

How does KL help?

● In short: LLVM!
● MCJIT-backed
● Fabric Core compiler + scheduler
● Let's look at some specifics...

So how does KL achieve this?

● Ease of use
● Fastest possible execution time
● Minimal memory footprint
● No significant startup delay

What's important for KL?

● JIT languages slower to start than interpreted (ex. Python)
● Want maximum performance from LLVM
● Two-pass compilation

– First unoptimized compilation pass
– Fully optimized code generated in background

KL – Compilation Passes

● Sample case: CityAtNight.py
● 37k lines KL
● = 1.8M lines IR (pre-opt)

KL – Compilation Passes

Method Startup time

Upfront optimization 2m56s

Background optimization 0m37s

● Using MCJIT ObjectCache since its introduction
● Cache both IR and objects
● Key based on hash of KL AST
● Use of IR “stubs” with cached data

KL – Caching

● Sample case: CityAtNight.py
● 37k lines KL
● = 1.8M lines IR (pre-opt)

KL – Caching

Method Startup time

Upfront optimization 2m56s

Background optimization 0m37s

From cache 0m4s

● Extensions export functions and methods
● Core links swappable function pointer into KL
● Same mechanism used in optimization pass
● Allows updating linked runtime code
● Explicit 'inline' modifier for extension functions

KL – Linking

● Sample case: SPHSimulation.py

KL – Linking

Method Startup time FPS

Inline everything 2m11s 26

Nothing inlined 0m34s 22

Selective use of 'inline' 0m35s 26

● After compilation want minimal memory use
● LLVM 3.4: delete Module after compile
● Still need multiple ExecutionEngines

KL – Memory Use

KL – Memory Use
● Sample case: Crowd.py
● With ObjectCache

Method RSS (MB)

Full IR + no removeModule 797

Stub IR + no removeModule 428

Full IR + removeModule 367

Stub IR + removeModule 356

Shared ExecutionEngine 296

● KL code run without modification on CPU or GPU
● AMD HSA hardware shared memory
● Nvidia Cuda 6 “shared memory” via driver
● Speedup varies by application and hardware but up to 10x faster
● First release coming in May 2014

KL – GPU Compute

● Sample case: Mandelbrot.py
● Standard desktop hardware

KL – GPU Compute

Target FPS

Intel Core i7-3770k @ 3.50GHz 3.7

NVIDIA Quadro K5000 23.5

● Dwarf info via LLVM DIBuilder
● LLDB JIT support
● Breakpoints, threads, variable inspection, etc.
● Python + PySide LLDB front-end

KL – Debugging

● Further reducing MCJIT memory footprint
● Better error handling in out-of-memory scenarios
● LLDB on Windows
● Clang on Windows
● GPU debugging?

Looking ahead

http://fabricengine.com/
andrew.macpherson@fabricengine.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

