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● Digital Content Creation (DCC) framework
● Standalone application built on PySide
● Integration with existing DCC tools (Splice)
● In use by production studios

What is Fabric Engine?



  

● Many DCC tools are old
● Closed and not configurable
● Writing plugins is hard (C++) or slow (Python)
● Development held back by software limitations

Why does Fabric Engine exist?



  

● KL language + 
dependency graph

● Host language bindings 
(Python/C++)

● Simple multithreading 
(MapReduce/PEX)

● Fully cross-platform 
(Windows/Linux/OSX)

● Code portable among 
other DCC applications



  

● Ease of Python with performance of threaded C++
● Write once, use anywhere
● Crash-free and updateable on the fly
● Supports extensions for integration with existing libraries
● Target selection at runtime (CPU or GPU)

How does KL help?



  



  

● In short: LLVM!
● MCJIT-backed
● Fabric Core compiler + scheduler
● Let's look at some specifics...

So how does KL achieve this?



  

● Ease of use
● Fastest possible execution time
● Minimal memory footprint
● No significant startup delay

What's important for KL?



  

● JIT languages slower to start than interpreted (ex. Python)
● Want maximum performance from LLVM
● Two-pass compilation

– First unoptimized compilation pass
– Fully optimized code generated in background

KL – Compilation Passes



  

● Sample case: CityAtNight.py
● 37k lines KL
● = 1.8M lines IR (pre-opt)

KL – Compilation Passes

Method Startup time

Upfront optimization 2m56s

Background optimization 0m37s



  

● Using MCJIT ObjectCache since its introduction
● Cache both IR and objects
● Key based on hash of KL AST
● Use of IR “stubs” with cached data

KL – Caching



  



  

● Sample case: CityAtNight.py
● 37k lines KL
● = 1.8M lines IR (pre-opt)

KL – Caching

Method Startup time

Upfront optimization 2m56s

Background optimization 0m37s

From cache 0m4s



  

● Extensions export functions and methods
● Core links swappable function pointer into KL
● Same mechanism used in optimization pass
● Allows updating linked runtime code
● Explicit 'inline' modifier for extension functions

KL – Linking



  



  

● Sample case: SPHSimulation.py

KL – Linking

Method Startup time FPS

Inline everything 2m11s 26

Nothing inlined 0m34s 22

Selective use of 'inline' 0m35s 26



  

● After compilation want minimal memory use
● LLVM 3.4: delete Module after compile
● Still need multiple ExecutionEngines

KL – Memory Use



  

KL – Memory Use
● Sample case: Crowd.py
● With ObjectCache

Method RSS (MB)

Full IR + no removeModule 797

Stub IR + no removeModule 428

Full IR + removeModule 367

Stub IR + removeModule 356

Shared ExecutionEngine 296



  

● KL code run without modification on CPU or GPU
● AMD HSA hardware shared memory
● Nvidia Cuda 6 “shared memory” via driver
● Speedup varies by application and hardware but up to 10x faster
● First release coming in May 2014

KL – GPU Compute



  

● Sample case: Mandelbrot.py
● Standard desktop hardware

KL – GPU Compute

Target FPS

Intel Core i7-3770k @ 3.50GHz 3.7

NVIDIA Quadro K5000 23.5



  



  

● Dwarf info via LLVM DIBuilder
● LLDB JIT support
● Breakpoints, threads, variable inspection, etc.
● Python + PySide LLDB front-end

KL – Debugging



  



  

● Further reducing MCJIT memory footprint
● Better error handling in out-of-memory scenarios
● LLDB on Windows
● Clang on Windows
● GPU debugging?

Looking ahead



  

http://fabricengine.com/
andrew.macpherson@fabricengine.com
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