
IBM Linux Technology Center

 © 2014 IBM Corporation

A new ABI for little-endian PowerPC64
Design & Implementation

Dr. Ulrich Weigand
Senior Technical Staff Member
GNU/Linux Compilers & Toolchain

Date: Apr 8, 2014

IBM Linux Technology Center

2 © 2014 IBM Corporation

Agenda

• The little-endian PowerPC64 platform

• Goals & methods of ABI design

• Overview of the new ABI
– In-depth: Establishing TOC addressability

– In-depth: Passing parameters in memory vs. register

• Implementation status

• Observations on ABI implementation in LLVM

IBM Linux Technology Center

3 © 2014 IBM Corporation

Contributors

Michael Gschwind

Ulrich Weigand

Steve Munroe

David Edelsohn

Alan Modra

Bill Schmidt

Anton Blanchard

Mike Meissner

Ian McIntosh

Julian Wang

IBM Linux Technology Center

4 © 2014 IBM Corporation

The little-endian PowerPC64 platform

IBM Linux Technology Center

5 © 2014 IBM Corporation

Power: big-endian vs. little-endian

• Status of endian support in the past
– Power ISA has long supported both BE and LE

– Actual Power hardware/firmware support for LE weak

– 64-bit server OSes always were BE only

• What is changing?
– Power8 HW/FW will fully support LE

– Power LE Linux distributions in development

• Why this change now?
– Customer requests to simplify application porting and

access to certain hardware extensions

– Tied into the OpenPOWER Foundation effort

IBM Linux Technology Center

6 © 2014 IBM Corporation

Power LE Linux

• How will Linux support Power LE?

– New architecture powerpc64le-ibm-linux

– No “multilib” co-existence support planned

– Support for 64-bit applications only

– Supported only on Power8 and up

– Linux distribution support to be announced

• What changes are required in Linux?
– Byte order – obviously

– New ABI – since we have the opportunity

–Otherwise, just another platform

IBM Linux Technology Center

7 © 2014 IBM Corporation

Designing a new ABI for PowerPC64
Goals & Methods

IBM Linux Technology Center

8 © 2014 IBM Corporation

PowerPC ABI – current status

• Current PowerPC ABI conceived over 25 years ago
– Reflects hardware implementations tradeoffs

• E.g., single chip vs. multi-chip implementation

– Reflects programming usage evolution and paradigms
• E.g., FORTRAN vs. object oriented programming
• E.g., lexical nesting rarely used in current languages

• Opportunity to introduce changes now
–Other platforms have introduced new ABIs with 64bit

–Only incremental improvements on POWER so far
• Could not break compatibility!

– Exploit new hardware capabilities
• Fusion; Improved indirect branch performance

IBM Linux Technology Center

9 © 2014 IBM Corporation

New Power Linux ABI design goals

• Starting point: PPC64 / AIX ABI
– Established, tested production code

– Leverage commonality across LE, BE and AIX

–Minimum disruption for tooling

• Define new capabilities as delta over baseline
– Align with the Intel ecosystem

– Create hardware optimization opportunities / synergies

–Optimize for modern code patterns
• More classes, abstraction
• Shorter function lengths
• More indirect calls

• If it ain’t broken, don’t fix it!

IBM Linux Technology Center

10 © 2014 IBM Corporation

Design approach

• Compatible implementation
– ELFv1 vs. ELFv2 orthogonal to LE vs. BE

– Full support for ELFv2 testing on BE hardware/OS

• Hands-on prototyping
– Prototype ABI variants through core toolchain stack

• Binutils, GCC, glibc, set of core libraries

– Support execution of variant-ABI executables
• Per-ABI ELF interpreter paths; co-installable

• Full-scale benchmarking
– Build all of SPECint, SPECfp, Python2/3 benchmarks

– Evaluate actual performance numbers on real hardware

IBM Linux Technology Center

11 © 2014 IBM Corporation

Overview of the PowerPC64 ELFv2 ABI

IBM Linux Technology Center

12 © 2014 IBM Corporation

ELFv2 ABI: Key improvements

• Execution without functions descriptors
– Use of dual entry points to reduce local call cost

– TOC base materialization using non-PIC and PIC code

• Optimize for main
–Main module to be built without PIC code

– Symbols in main not dynamically resolved

• Parameter passing
– Pass/return more structures in registers

• Streamline stack frame
– Allocate parameter save area only when required

– Drop unused words

•

IBM Linux Technology Center

13 © 2014 IBM Corporation

ELFv2 ABI: Best practices as default

• Optimize function cross-module calls
– Scheduled GOT pointer save in caller

–Option to inline PLT stub

• “Medium Code Model” as default
– Avoid TOC overflow code

– Leverage Fusion capability in Power8

• More descriptive object file info
–More precise DWARF, Reloc’s, and ELF format flags

– Improve future ABI extensibility

IBM Linux Technology Center

14 © 2014 IBM Corporation

In-depth: Establishing TOC addressability

IBM Linux Technology Center

15 © 2014 IBM Corporation

Background: TOC pointer

• The TOC pointer (GOT pointer) is a value that
points to a data dictionary and/or the data
–On 64-bit Power this value is stored in r2

• Data can be addressed either
– by loading the address of data from the TOC (GOT) and

then using the address to so loaded to access data
(TOC/GOT-indirect)

– by loading data from the TOC (TOC-relative)

• Each module has a different TOC
– Cross-module calls must save and restore old TOC,

and load appropriate new TOC value

IBM Linux Technology Center

16 © 2014 IBM Corporation

Background: Function calls

• Direct calls refer to function symbol
– Resolved at link time to target function address if known

local (in the same module)

– Resolved to linker-generated PLT stub if possibly global
(in another module)

– Dynamic loader redirects PLT to final target

• Indirect calls refer to variable holding a target
address
– Used to implement C function pointers, C++ virtual

functions etc.

IBM Linux Technology Center

17 © 2014 IBM Corporation

Determine new TOC value

• Various options used in other ABIs
– Caller: Provide TOC value to callee

• Easy if local call; complicated if not
• Implemented via function descriptors on Power

– Callee: Load TOC value as absolute address
• Prevents position-independent code

– Callee: Compute TOC value based on current code
load address – need to determine that address!
• Via PC-relative instructions if available (not on Power)
• Via an artificial “function call” (expensive)
• Provided by caller (may prevent use of direct calls)

Old
Power
64-bit
ABI

Intel 64-bit

Intel/Power 32-bit

Alpha, Mips

IBM Linux Technology Center

18 © 2014 IBM Corporation

Solution chosen for ELFv2 ABI

• Two entry points for each function:
– Local EP: TOC expected in r2

–Global EP: EP address expected in r12
• Prologue code computes TOC from EP address

– Just one single ELF symbol (points to global EP)
• Delta to local EP encoded in ELF st_other bits

• Call sequences:
– Direct call provides current TOC (already in r2)

• If known local at link time, call resolved to Local EP
• If redirected to PLT stub, stub loads target Global EP

address from TOC into r12 and branches to it

– Indirect call via Global EP address in r12

IBM Linux Technology Center

19 © 2014 IBM Corporation

Advantages and disadvantages

• Pro
– No more function descriptors!

– No performance regression (in fact, ~1% improvement)

–Optimization opportunities
• If function does not need TOC, local EP == global EP
• Short-cut to local EP as soon as call known to be local
• Optimize TOC save/restore just as with old ABI

• Con
– Need to special-case dual entry points in some places

• Linux kernel function patching
• Valgrind transparent call redirection
• But: in most places dual EPs “just work” transparently

IBM Linux Technology Center

20 © 2014 IBM Corporation

In-depth: Passing parameters

IBM Linux Technology Center

21 © 2014 IBM Corporation

Register usage

• Goal: Pass each data type in “natural” register
– Integer parameters general purpose registers

– Floating point parameters floating point registers

– Vector parameters vector registers

• Goal: Reduce abstraction penalty
–OO languages wrap basic data types in a class

–Old Power ABI passes most structs via GPRs

– And returns most struct results in memory

• Solution: homogeneous float/vector aggregates
– Classes with up to 8 aggregate elements passed in

natural registers – modeled after ARM

IBM Linux Technology Center

22 © 2014 IBM Corporation

Function return values

• Function results in same location as first input
parameter
– Homogenous float and vector aggregates in float and

vector registers

– Cap on number of registers used for GPR results (64
bytes)

• Other aggregates, unions, and arrays returned by
reference in memory
– Location provided by caller as anonymous first

parameter (no change from today)

IBM Linux Technology Center

23 © 2014 IBM Corporation

Parameter passing and variadic arguments

• Options to implement va_list in prior ABIs
– All parameters in memory: va_list is simple pointer

– va_list is data structure tracking registers+memory

– va_start reconstructs linear in-memory argument list
• Need to leave free space before on-stack params
• Skip GPRs for parameters in FPRs or VRs

– Allows “safe mode” for functions without prototypes by
replicating FPR/VR params in GPR/memory

• ELFv2 changes
– Eliminate parameter save area for functions that are

known non-vararg and have no on-stack params

– Preserves ABI properties, but saves stack space for
most function calls

Intel 64-bit

Intel 32-bit

Old
Power
64-bit
ABI

IBM Linux Technology Center

24 © 2014 IBM Corporation

Stack frame reduction

• Helps in constrained environments
– E.g., Linux kernel (limited kernel stack space)

– Hypervisor and firmware code

• Avoid register save area in most cases

• Eliminate unused fields
– Compiler reserved slot, linker reserved slot, VRSAVE

• Minimum stack frame size now 32 bytes
–Old ABI required 112 bytes

IBM Linux Technology Center

25 © 2014 IBM Corporation

Implementation Status

IBM Linux Technology Center

26 © 2014 IBM Corporation

ELFv2 ABI Implementation Status

• Core GNU Toolchain support complete
– Binutils, GCC, glibc, GDB

• Several packages requiring smaller changes
– libffi, Mozilla xptcall, python-greenlet, ...

– kernel module loader, grub2 loader, ...

• Major packages with work still in progress
– LLVM, valgrind, mono

• Distribution status
– Experimental porting efforts under way

• Debian, Ubuntu, openSUSE, Fedora
• 10000s of packages successfully built

IBM Linux Technology Center

27 © 2014 IBM Corporation

ABI Implementation in LLVM/Clang

IBM Linux Technology Center

28 © 2014 IBM Corporation

ELFv2 ABI implementation in LLVM/Clang

• Current status
– Function call / TOC setup changes implemented

• Patches not yet posted upstream

– Stack frame layout changes mostly implemented

– Homogeneous structs not yet implemented

• Issues
– Code refactoring to support both ELF ABIs

(and Darwin, and 32-bit SVR4)

– Split between LLVM and Clang implementation
(see example on following slides)

IBM Linux Technology Center

29 © 2014 IBM Corporation

Function call example – source

typedef struct { int a; int b; } two_ints;

typedef struct { float a; } one_float;

typedef struct { float a; float b; } two_floats;

typedef struct { long a; long b; long c; long d; } four_longs;

int a; one_float b; two_ints c; two_floats d; four_longs e; int f;

void callee (int a, one_float b, two_ints c, two_floats d,

 four_longs e, int f);

void caller (void)

{

 callee (a, b, c, d, e, f);

}

Stack layout at
entry to callee

Old ABI

0 - BC

8 - CR

16 - LR

24 - (-)

32 - (-)

40 - TOC

48 r3 (a)

56 f1 (b)

64 r5 (c)

72 r6 (d)

80 r7 (e.a)

88 r8 (e.b)

96 r8 (e.c)

104 r10 (e.d)

112 - f

IBM Linux Technology Center

30 © 2014 IBM Corporation

Function call example – GCC asm

 lwa 3,0(10) # r10: &a

 lfs 1,0(9) # r9: &b

 ld 5,0(8) # r8: &c

 ld 6,0(7) # r7: &d

 ld 7,0(11) # r11: &e

 ld 8,8(11)

 ld 9,16(11)

 ld 10,24(11)

 lwa 0,0(4) # r4: &f

 std 0,112(1)

 bl callee

 nop

0 - BC

8 - CR

16 - LR

24 - (-)

32 - (-)

40 - TOC

48 r3 (a)

56 f1 (b)

64 r5 (c)

72 r6 (d)

80 r7 (e.a)

88 r8 (e.b)

96 r8 (e.c)

104 r10 (e.d)

112 - f

Old ABI

IBM Linux Technology Center

31 © 2014 IBM Corporation

Function call example – LLVM IR

%struct.one_float = type { float }

%struct.two_ints = type { i32, i32 }

%struct.two_floats = type { float, float }

%struct.four_longs = type { i64, i64, i64, i64 }

define void @caller() {

entry:

 %0 = load i32* @a, align 4

 %1 = load i32* @f, align 4

 %2 = load float* getelementptr inbounds (%struct.one_float*
@b, i64 0, i32 0), align 4

 tail call void @callee(i32 signext %0, float inreg %2,
%struct.two_ints* byval @c, %struct.two_floats* byval @d,
%struct.four_longs* byval @e, i32 signext %1)

 ret void }

0 - BC

8 - CR

16 - LR

24 - (-)

32 - (-)

40 - TOC

48 r3 (a)

56 f1 (b)

64 r5 (c)

72 r6 (d)

80 r7 (e.a)

88 r8 (e.b)

96 r8 (e.c)

104 r10 (e.d)

112 - f

Old ABI

IBM Linux Technology Center

32 © 2014 IBM Corporation

Function call example – LLVM asm

 ld 12, 0(6)

 std 12, 64(1)

 ld 12, 0(7)

 std 12, 72(1)

 ld 8, 24(11)

 ld 9, 16(11)

 ld 10, 8(11)

 ld 11, 0(11)

 std 8, 104(1)

 std 9, 96(1)

 std 10, 88(1)

 std 11, 80(1)

0 - BC

8 - CR

16 - LR

24 - (-)

32 - (-)

40 - TOC

48 r3 (a)

56 f1 (b)

64 r5 (c)

72 r6 (d)

80 r7 (e.a)

88 r8 (e.b)

96 r8 (e.c)

104 r10 (e.d)

112 - f

 lwa 3, 0(3)

 lwa 4, 0(4)

 lfs 1, 0(8)

 ld 10, 24(11)

 ld 9, 16(11)

 ld 8, 8(11)

 ld 7, 0(11)

 ld 6, 0(6)

 ld 5, 0(5)

 std 4, 112(1)

 bl callee

 nop
Old ABI

IBM Linux Technology Center

33 © 2014 IBM Corporation

ABI implementation: LLVM vs. Clang

• Problems to be solved
– Do not use “byval” for anything completely in registers

• In ELFv2, if everything is in register, there is no
parameter save area, so we cannot “stage” there

• In any case, staging all structs is inefficient

– Detect homogeneous structs in Clang and/or LLVM ?
• Note: “float” struct member uses 4 bytes of stack; stand-

alone “float” variable uses 8 bytes of stack!

– Do I need to track registers in Clang?
• To know for sure whether argument will end up in regs
• Currently done for x86_64 target

IBM Linux Technology Center

34 © 2014 IBM Corporation

Summary

IBM Linux Technology Center

35 © 2014 IBM Corporation

Summary

• New little-endian 64-bit PowerPC architecture

• Opportunity to implement new ABI
– Largely aligned with old PowerPC64 ABI, but ...

– No more function descriptors

– Improved parameter passing

• Implementation status
– Several Linux distributions in experimental porting

– Core GNU toolchain fully implemented

– Clang/LLVM implementation in progress
• Still need to resolve some issues

IBM Linux Technology Center

36 © 2014 IBM Corporation

Questions

?

	IBM Linux Technology Center - Core Linux and Open Source Expertise
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

