Fast JIT Code Generation

Tilmann Scheller

Overview

* [ntroduction

» tiny-llvm-codegen

» SkyEye

» Performance Numbers

@ Summary

Introduction Pnmsuncd

» Traditional LLVM JIT has a relatively high overhead since it's

essentially using the same code generator like the static
compiler

» Only useful for really hot code
» Fast-isel solves part of the problem but overhead still significant

» |t would be nice to just flip a switch and get a different tradeoff
In terms of compile time/runtime performance

tiny-livm-codegen Punmsunce

» Work is based on tiny-llvm-codegen

» tiny-llvm-codegen is a really simple JIT for LLVM IR targeting
X86-32

* Developed by Mark Seaborn in March 2013
» Ported tiny-llvm-codegen to x86-64
» Added basic support for the AMD64 System V ABI

tiny-llvm-codegen

» Extremely simple translator

» Very small (about 2000 LOC)

* No register allocation

» No instruction selection

» No instruction scheduling

» Just translating every LLVM IR instruction one by one

» All values go into memory

define 164 @foo(i64 %a, 164 %b) {

}

%1 = add i64 %b, %a
ret 164 %1

foo:
push
mov
sub
mov
mov
mov
mov
add
mov
mov
leaveq
retq

%rbop

%rsp, %rbp

$0x1c, %rsp

%rdi, -Ox8(%rbp)

%rsi, -0x10(%rbp)
-0Xx10(%rbp), %rax
-Ox8(%rbp), %rcx

%rcx, %rax

%rax, -0x18(%rbp)
-0x18(%rbp), %rax

tiny-llvm-codegen

» Supported: Integer operations

» Missing: Floating-point operations, Vector operations
» No performance tuning yet

» Probably lots of low hanging fruit

» Supportsil, 18, 116, 132, 164

Open Source full system simulator

Supports a wide range of different architectures: ARM,
PowerPC, MIPS, x86, SPARC, ColdFire, Blackfin

Does interpretation as well as dynamic binary translation with
LLVM (using a fork of the libcpu project)

Can run an ARM Android 2.2 build

P -
l'l

daNn>=0ID

ARM

Y

Interpreter

» Translate to LLVM IR

Y

Optimize LLVM IR

v . v

tiny-llvm-codegen LLVM JIT

L i

. x86-64 T xB664

Simulating a Samsung S3C6410X SoC with an ARM11 core
Booting an ARMv6 Linux 3.0 kernel

This requires about 150 million instructions

Produces 33MB of optimized bitcode J ot BRI

vl
b
A

-
A

L

*.l]

v)

.&l'

- [1

B

£
A

N

LI |

ISR LR

Test workload Pnmsuncd

» Compiling the 33MB of bitcode offline:

@ 3.3 seconds with tiny-llvm-codegen
@ 67 seconds with lic

» JITing every basic block which is executed at least twice to
compare the performance of both JITs

» Booting the kernel on the simulated system: about 3x faster
when using tiny-llvm-codegen (24 sec vs. 76 sec)

» Measured on an Intel Core 17-4770K

Summary

Ported tiny-llvm-codegen to x86-64
» Successfully compiles a substantial amount of LLVM IR
» Performance numbers look promising

» Future:

@ Support the remaining LLVM IR instructions
» Performance tuning

@ Add support for another architecture

» Add a simple register allocator?

Thank you.

References

» http://github.com/mseaborn/tiny-llvm-codegen
» http://skyeye.sourceforge.net

» http://libcpu.org

http://github.com/mseaborn/tiny-llvm-codegen
http://skyeye.sourceforge.net/
http://libcpu.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

