
AddressSanitizer
+

Code Coverage
Kostya Serebryany, Google

EuroLLVM 2014

New and shiny -fprofile-instr-generate

● Coming this year
● Fast BB-level code coverage
● Increment a counter per every (*) BB

○ Possible contention on counters
● Creates special non-code sections

○ Counters
○ Function names, line numbers

Meanwhile: ASanCoverage

● Tiny prototype-ish thing:
○ Part of AddressSanitizer
○ 30 lines in LLVM, 100 in run-time

● Function- or BB- level coverage
○ Booleans only, not counters
○ No contention
○ No extra sections in the binary

At compile time:

if (!*BB_Guard) {
 __sanitizer_cov();
 *BB_Guard = 1;
}

At run time

void __sanitizer_cov() {
 Record(GET_CALLER_PC());
}

At exit time

● For every binary/DSO in the process:
○ Dump observed PCs in a separate file as 4-byte

offsets

At analysis time

● Compare/Merge using 20 lines of python

● Symbolize using regular DWARF

% cat cov.c
int main() { }
% clang -g -fsanitize=address -mllvm -asan-coverage=1 cov.
c
% ASAN_OPTIONS=coverage=1 ./a.out
% wc -c *sancov
4 a.out.15751.sancov

% sancov.py print a.out.15751.sancov
sancov.py: read 1 PCs from a.out.15751.sancov
sancov.py: 1 files merged; 1 PCs total
0x4850b7

% sancov.py print *.sancov | llvm-symbolizer --obj=a.out
main
/tmp/cov.c:1:0

Fuzzing with coverage feedback

● Test corpus: N random tests

● Randomly mutate random test
○ If new BB is covered -- add this test to the corpus

● Many new bugs in well fuzzed projects!

Feedback from our customers

● Speed is paramount

● Binary size is important
○ Permanent & temporary storage, tmps, I/O
○ Stripping non-code section helps partially, but

complicates the process

● Booleans per BB is enough

Challenge: Chromium sandbox

● Chromium sandbox forbids open()

● ASanCoverage creates too many new BBs
○ 1 file in Chromium takes 30 minutes to build
○ Same issue as with ASan & MSan
○ We hit N^3 in llvm::SpillPlacement
○ Same bug happens just with -O3 on ARM
○ PR17409: volunteers?

Issue: compile time

http://llvm.org/bugs/show_bug.cgi?id=17409
http://llvm.org/bugs/show_bug.cgi?id=17409

ASanCov vs -fprofile-instr-generate
ASanCov -fprofile

Ready to use? YES NO

Binary size increase ~ 5% > 50% (*)

Executable code size increase ~ 5% ~ 3%

Contention on counters NO YES

Output per BB Boolean Counter

Debug info DWARF Separate

Typical slowdown < 20% < 20%

Can we improve
-fprofile-instr-generate

 based on experience with
ASanCoverage?

More on counter contention

● Counters are incremented every time the
program enters a BB

● Counters are global variables
● Typically no trouble, but…
● Example: multi-threaded codec: same

functions are running from N threads
○ Cache line ping-pong => 10x slowdown

