
 Normalization – parse the command line language
 Resolution – resolve symbols
 Layout – relocate instructions and data
 Emission – emit file by various formats

MCLinker Linking Stages Comparison of Modern Linkers

GNU ld Google gold MCLinker

License GPLv3 GPLv3 UIUC BSD-Style

Target
Platform

All Linux mainstream
devices

ARM, X86, X86_64,
(Mips, SPARC)

ARM, X86, X86_64, Mips
(,X32, Mips64 and Hexagon)

Object Format COFF, a.out, ELF ELF only ELF, extensible

Line of Code 500+K 100+K 50+K

Performance - Fast Fastest
Steadily x2 than GNU ld, x1.3
than Google gold

Intermediate
Representation

The BFD library for
reference graph

None Command line language and
reference graph

 MCLinker is a full-fledged system linker

 The architecture is based on LLVM Machine
Code (MC) layer

 MCLinker is designed for on device linking

 MCLinker is fast, small with low memory usage

 MCLinker is a candidate linker of Android and
BSD standard systems

 MCLinker provides its own intermediate
representation (IR) for efficient transformation and
analysis

Comparison of Linking Speed

Intermediate Representation (IR)

The meaning of a option depends on
 their positions
 the other potions
 Some options have its own grammar

 The input File Tree
Each vertex represents an input file
with its attributes
Linkers resolve symbols by DFS and
merge sections by BFS

 Linker Command Line Language

 MCLinker is the first *ELF linker to provide an
intermediate representation (IR)
 MCLinker provides IR on two levels

Linker Command Line Language
Fragment-Reference Graph

Fragment is the basic linking unit, it can be
A section (coarse granularity)
A block of code or instructions (middle
granularity)
An individual symbol and its code/data (fine
granularity)

MCLinker can trade linking time for the output quality

Example:
$ ld a.o –start-group b.a c.a –end-group d.o e.o

 Fragment-Reference Graph

 A fragment is a block of instruction
code or data in a module

A reference is a symbolic linkage
between two fragments

 A relocation represents an use-define
relationship between two fragments

 Optimization: fragment stripping,
branch optimization, low-level inlining

relocation

use define

symbol define fragment use fragment

a reference

__start __global

fragment

edge

Future Objectives

 MCLinker has successfully linked Android and BSD base system

 The next step is to link Linux kernel and provide more processors support

 MCLinker is contributed by

 many people worldwide

MCLinker
Design and Implementation of a Fragments-based Target-independent Linker http://code.google.com/p/mclinker

