
A Prototype for Fast
Type-Aware Memory

Profiling
Nico Weber

thakis@chromium.org

A Prototype for Fast
Type-Aware Memory

Profiling
Nico Weber

thakis@chromium.org
Dai Mikurube

dmikurube@chromium.org

State of the art

• Most profilers* hook malloc()

• and collect stacks

• But type information would be nice

What’s “Type-Aware”
mean?

• LookupType(address) -> type info

• available at runtime

• can aggregate memory use by type

State of the art 2

• Some languages (Java…) have rich enough
type metadata to get this for free

• C++: memtrack uses #define new MAGIC

• but that uses a define

• for new

• ugh

Our stuff

• compiler-based instrumentation

• operator new(...) ⇒

__op_new_intercept__(

 operator new(...), size_t, type_info)

• User code implements
__op_new_intercept__!

Example: logger

void* ::__op_new_intercept__(
 void* address, size_t size,
 const std::type_info& type) {
 fprintf(“Allocated %lu bytes “
 “for %s at %016p.\n”,
 size,type.name(),address);
 return address;
}

Results

• Early days

• Looks like 30-40% of browser memory are
from string-related types

• Hope to use this to provide data on Clang/
LLVM’s memory usage soon

Next steps

• Prove usefulness in chromium, clang

• Ideally, make it possible to do type-aware
profiling with regular clang

• Dai will reach out to the list

Thanks!

Links

• http://dev.chromium.org/developers/deep-
memory-profiler

• http://src.chromium.org/viewvc/chrome/
trunk/deps/third_party/llvm-allocated-type

• http://crrev.com/158752

Links 2

• http://www.almostinfinite.com/
memtrack.html

• http://ieeexplore.ieee.org/xpl/
freeabs_all.jsp?
reload=true&&arnumber=6080813

Other approaches

• Don’t do this in client code but in
compiler-rt (locking etc)

• Intercept at LLVM level instead of clang
level

• Change signature of operator new()

• Have type info available in magic variable in
operator new()

