

Software and Services Group Optimization Notice

Shevlin Park: Implementing C++ AMP with Clang/LLVM
and OpenCL

Dillon Sharlet

with Aaron Kunze, Stephen Junkins, Deepti Joshi

Software and Services Group Optimization Notice

Agenda

• Introduction to Microsoft C++ AMP

– Comparison to OpenCL

• Introduction to Shevlin Park

– Architecture overview
• Clang modifications

• LLVM modifications

– Compilation example

• Performance analysis

2

Software and Services Group Optimization Notice

Microsoft C++ AMP Introduction

• C++ AMP Specification:

– Elegant, minimal C++ extensions and template libraries for data
parallel programming

– Released under liberal “Community Promise” license, allowing
other implementations

• C++ AMP Implementation in Visual Studio 2012:

– Based on DX11 Compute Shader

– Decent GPU support, but thus far anemic CPU support (WARP
device)

– Seamlessly integrated into Visual Studio 2012 (compiler,
debugger, analyzer)

3

Our (subjective) experience: Writing data parallel code using C++ AMP is highly
productive

Software and Services Group Optimization Notice

Comparing OpenCL & C++ AMP

• Very similar data parallel programming models for
device code

• OpenCL integrates host and device code via driver API

– Kernel code is separate from host code

– Full control, host compiler independent, broad platform support

• C++ AMP integrates host and device in the same
programming language

– Simple to program, hides driver API

– Somewhat similar to CUDA runtime API

– Currently, only supported on windows (by DirectX 11)

4

Software and Services Group Optimization Notice

Comparing OpenCL & C++ AMP: Code
Comparison

// OpenCL Host Code:

cl_command_queue q = clCreateCommandQueue(

 m_context, m_devices[0],

 m_queueProperties, &status);

if (CL_SUCCESS != status) return status;

cl_int param1 = 42;

if (CL_SUCCESS != status) return status;

cl_kernel k = clCreateKernel(p, "Simple", &status);

if (CL_SUCCESS != status) return status;

status = clSetKernelArg(k, 0, sizeof(cl_int), ¶m1);

if (CL_SUCCESS != status) return status;

status = clSetKernelArg(k, 1, sizeof(cl_mem), &buf);

if (CL_SUCCESS != status) return status;

size_t woffset = 0;

size_t gsize = 1024;

status = clEnqueueNDRangeKernel(q, k, 1,

 &woffset, &gsize, 0, 0, 0, 0);

if (CL_SUCCESS != status) return status;

// C++ AMP Heterogenous Code:

void MatrixMul(float * C, const float * A,

 const float * B, int M, int N, int L)

{

 // Matrix dimensions.

 extent<2> exA(M, N), exB(N, L), exC(M, L);

 // Adapt host data to C++ AMP access.

 array_view<const float, 2> a(exA, A);

 array_view<const float, 2> b(exB, B);

 array_view<float, 2> c(exC, C);

 // Compute sum(row*column) over whole matrix.

 parallel_for_each (c.extent,

 [=](index<2> idx) restrict(amp)

}

5

// OpenCL Device Code:

__kernel void Naive(__global float * C,

 __global const float * A, __global

 const float * B, int N)

{

 // Get matrix dimensions.

 const int L = get_global_size(0);

 const int M = get_global_size(1);

 // Get column/row.

 int j = get_global_id(0);

 int i = get_global_id(1);

 // Compute sum(row*column) over whole matrix.

 float sum = 0.0f;

 for(int k = 0; k < N; ++k)

 sum += A[i * N + k] * B[k * L + j];

 // Write result.

 C[i * L + j] = sum;

}

 {

 float sum = 0.0f;

 for(int k = 0; k < N; ++k)

 sum += a(idx[0], k) *

 b(k, idx[1]);

 c[idx] = sum;

 });

C++AMP: Unified Host & Device C++ Source Compilation

Software and Services Group Optimization Notice

Comparing OpenCL & C++ AMP: Device
Features

6

Device Exec Semantics & Compute Primitives: Mostly Equivalent

Feature OpenCL C++AMP

Iteration /
Instance
semantics

__kernel (Local size L2×L1×L0)
Global size G2×G1×G0
𝐺2
𝐿2
×

𝐺1
𝐿1
×

𝐺0
𝐿0

 workgroups

Workgroup
L2×L1×L0 workitems
__local memory, barriers , memory fences

parallel_for_each<L0,L1,L2>
Global extent G0×G1×G2
𝐺0
𝐿0
×

𝐺1
𝐿1
×

𝐺2
𝐿2

 tiles

Tile
L0×L1×L2 threads
tile_static memory, barriers , memory fences

Buffers 1D buffers
Allows device access to pre-allocated system memory
Buffers migrate where needed

1D, 2D, 3D array<> and array_view<>
Allows device access to pre-allocated system memory
(implementation doesn’t use this, DX limitation)
Instance of array<> specified to live on device or CPU

Texture, surface,
sampler support

Formats: {char, short, int, half, float, double} × {1, 2, 3, 4}
Defines mapping from channels to colors
Defines image sampler operations

Formats: {char, short, int, half, float, double} × {1, 2, 3, 4}
Channels are ordered as they are in memory.
Lacks sampler parameterization (interpolation, addressing
modes).

Short vec data types {char, uchar, short, int, uint, long, ulong, float, double} × {2,
3, 4, 8, 16}

{int, uint, float, double, norm, unorm} × {2, 3, 4}

Atomics atomic_* concurrency::atomic_*

Math
primitives

Explicit control via native_* functions
Appears to be a superset of C++ AMP

fast_math, precise_math namespaces
Lacks half_*, minmag/maxmag, vector built-ins

Software and Services Group Optimization Notice

Shevlin Park Introduction and Architecture

• Shevlin Park: Implementation of Microsoft C++ AMP specification
– Built on Clang/LLVM, targets OpenCL for GPU & CPU

• Includes a modified Clang/LLVM compiler, AMP template library, and
a small runtime library

7

Application

ShvPrk Templates

ShvPrk Library

OpenCL Runtime

Compiler Runtime

ShvPrk Front End (Clang)

C++ AMP
Source

Application
Binary

(x86 + OpenCL C)

ShvPrk Back End (LLVM)

AMP implementation not tied to Visual Studio or DirectX!

Software and Services Group Optimization Notice

Shevlin Park C++ AMP Compiler

• Clang modifications for
C++ AMP language
extensions

• LLVM modifications for
OpenCL codegen and
runtime library interface
support

• Details ahead…

8

Clang 3.1

(C++ Front End)

LLVM 3.1

AMP To OpenCL

a
rc

h

in
d

e
p

e
n

d
e

n
t

a
rc

h

d
e

p
e

n
d

e
n

t

Application
Binary

(w/ OpenCL C)

Source to source translation (via LLVM IR) of C++AMP device code to OpenCL C

C++ AMP
Source

Software and Services Group Optimization Notice

C++ AMP restrict Keyword Overview

• Language restrictions imposed by restrict qualifiers are a contract
between the compiler and developer

• restrict(amp) designed to enable compiler to generate code for
alternative devices, such as Direct3D or OpenCL devices

• Examples:

9

// Overloading and overload resolution
int f() restrict(amp) { return 1; }
int f() restrict(cpu) { return 0; }

int g() restrict(amp, cpu) { return f(); }

// Function call restrictions
int f() /*restrict(cpu)*/ { return 0; }

// Error: no ‘f’ with restrict(amp)
int g() restrict(amp) { return f(); }

// Restriction examples
void f() restrict(amp)
{
 // short not allowed
 short x;

jmp:
 // Static variables not allowed
 static int y;

 // Goto not allowed
 goto jmp;
}

Software and Services Group Optimization Notice

Motivation Behind restrict Keyword
Implementation

• Expressions that result in overload resolution
must be evaluated once per restriction of the
calling context

– As far as I know, this cannot be represented with
existing AST features

• First approach: clone FunctionDecls that are
marked with more than one restrict qualifier

– Perform semantic analysis for each of the cloned
functions

– Difficult to clone AST nodes correctly…

10

Software and Services Group Optimization Notice

Shevlin Park Frontend: Clang Modifications

• Added parser support for restrict syntax

– Attaches RestrictAttr (Attr derived class) to FunctionDecl
instances

– This implementation is temporary, to be replaced with restrict
qualifiers implemented as part of function types

• Modified AST to support restrict keyword

– Added RestrictOverloadExpr to support constructing
expressions per restrict context

• Stores an expression per restrict context

– Added restrict information to DeclRefExpr, MemberExpr

– Added support for RestrictOverloadExpr to constant expression
evaluators

– (Example on next slide)

11

Software and Services Group Optimization Notice

RestrictOverloadExpr Example

int f() __attribute__((restrict(0))) (CompoundStmt 0xbb22c8

 (ReturnStmt 0xbb22b8 <col:25, col:32>

 (IntegerLiteral 0xbb2298 <col:32> 'int' 1)))

int f() __attribute__((restrict(1))) (CompoundStmt 0xbb23f8

 (ReturnStmt 0xbb23e8 <col:25, col:32>

 (IntegerLiteral 0xbb23c8 <col:32> 'int' 0)))

int g() __attribute__((restrict(0))) __attribute__((restrict(1))) (CompoundStmt 0xbb2650

 (ReturnStmt 0xbb2640 <col:30, col:39>

 (RestrictOverloadExpr 0xbb2630 <col:37, col:39> 'int'

 (CallExpr 0xbb25b8 <col:37, col:39> 'int'

 (ImplicitCastExpr 0xbb25a8 <col:37> 'int (*)(void)' <FunctionToPointerDecay>

 (DeclRefExpr 0xb574 'int (void)' lvalue Function 0xbb21f0 'f' 'int (void)' restrict(amp))))

 (CallExpr 0xbb2600 <col:37, col:39> 'int'

 (ImplicitCastExpr 0xbb25f0 <col:37> 'int (*)(void)' <FunctionToPointerDecay>

 (DeclRefExpr 0xb5d4 'int (void)' lvalue Function 0xbb2320 'f' 'int (void)' restrict(cpu)))))))

12

// Original source

int f() restrict(amp) { return 1; }

int f() restrict(cpu) { return 0; }

int g() restrict(amp, cpu) { return f(); }

Software and Services Group Optimization Notice

Clang Modifications, cont’d

• Modified semantic analysis

– Added diagnostics for C++ AMP restrictions

– Overload resolution performed for each calling restriction context,
results stored in RestrictOverloadExpr

• Modified code generation

– Modified GlobalDecl to refer to a declaration and a restrict context

– Functions are emitted once per restrict context (once per RestrictAttr)

– For functions being emitted for restrict(amp):

• Modify name mangling to append ‘__AMP’

• Add LLVM metadata to identify restrict(amp) functions

• Set linkage to internal

– Added visitors for RestrictOverloadExpr to select expression based on restrict
context of current GlobalDecl

• Added miscellaneous support (StmtDumper, StmtPrinter,
Serialization, etc.)

 13

Software and Services Group Optimization Notice

Diagnostics examples

AMP.cpp:3:26: error: no matching function for call
to 'f'

void g() restrict(cpu) { f(); }

 ^

AMP.cpp:1:6: note: candidate function not viable:
incompatible restriction specifiers

void f() restrict(amp);

 ^

1 error generated.

14

// Original source

void f() restrict(amp);

void g() restrict(cpu) { f(); }

AMP.cpp:8:2: error: type 'A' is not amp compatible

 A a;

 ^

AMP.cpp:3:7: note: see declaration of member 'x'

 char x;

        ~~~~~^ 

AMP.cpp:1:8: note: see declaration of type 'A' 

struct A 

~~~~~~~^ 

1 error generated.

// Original source

struct A { char x; };

void f() restrict(amp)

{

 A a;

}

Software and Services Group Optimization Notice

Shevlin Park Backend: LLVM Modifications

• Modifications contained entirely in new LLVM pass

– Generates OpenCL C for functions identified as amp-restricted by LLVM
metadata

– Generates runtime functions for accessing metadata about OpenCL C
code

• Kernels in C++ AMP are lambdas (functors)

– Functor member variables are generated as kernel arguments in
OpenCL C

– Lambda parameter (the index) is generated in a bit of kernel prolog
code

• OpenCL C kernel metadata is identified by member function
pointers (to the function operator)

– Kernel name

– Number of arguments

– Argument pointers/sizes

15

Software and Services Group Optimization Notice

LLVM Modifications, cont’d

• Structured control flow generated from LLVM’s
unstructured control flow

– Not ideal! It would be easier to generate OpenCL C from the
AST…

– … but we are hoping to intercept SPIR, which would be an
appropriate target

• Address space analysis performed on LLVM IR

– __global pointers in array/array_views

– __local pointers for tile_static declarations

– Address spaces are then propagated through instructions so
correct OpenCL C can be generated

• This is not always possible to do statically…

16

Software and Services Group Optimization Notice

OpenCL Device

Application

ShvPrk Headers

ShvPrk Library

OpenCL Runtime

Shevlin Park Runtime

• Shevlin Park runtime is a combination of C++ templates
and a small library

• AMP header library implements the
AMP user API
– array<T,N>, array_view<T,N>, etc. from the

specification

– Math, atomics, and other restrict(amp) built-
ins

– parallel_for_each, creates and compiles
kernels using internal interface exposed by…

• …thin library to interface with OpenCL
runtime

• OpenCL executes compiled kernels

17

Shevlin Park compiles C++ AMP programs to programs with OpenCL kernels usable
with a standard OpenCL implementation

Software and Services Group

Clang

LLVM

AMP To OpenCL

a
rc

h

in
d

e
p

e
n

d
e

n
t

a
rc

h

d
e

p
e

n
d

e
n

t

OpenCL Runtime

LLVM IR

OpenCL C Host Binary

runtime

compile time

Optimization Notice

C++ AMP
Source

ShvPrk
Library

const int N = 32;

int data[N];
array_view < int, 1 > data_av(N, data);

parallel_for_each(data_av.extent,
 [] (index<1> i) restrict(amp)
{
 data_av[i] = data_av[i] + 7;
});

data_av.synchronize();

Shevlin Park Compilation Example

18

Software and Services Group

Clang

LLVM

AMP To OpenCL

a
rc

h

in
d

e
p

e
n

d
e

n
t

a
rc

h

d
e

p
e

n
d

e
n

t

OpenCL Runtime

LLVM IR

OpenCL C Host Binary

runtime

compile time

Optimization Notice

C++ AMP
Source

ShvPrk
Library

// From amp.h:

// Despite not being marked static, these functions
// have internal linkage.
extern "C"
{
 // OpenCL code for this translation unit.
 const char *_amp_program();

 // Kernel name for a pointer to a function in this
 // translation unit.
 const char *_amp_kernel_name(const void *f);

 // Kernel argument info.
 int _amp_kernel_arg_count(const void *f);
 const void *_amp_kernel_arg_ptr(const void *f,
 const void *_this,
 int arg);
 int _amp_kernel_arg_size(const void *f, int arg);
 void *_amp_kernel_arg_sync(const void *f, const
 void *_this, int arg);
}

Shevlin Park Compilation Example

19

Software and Services Group

Clang

LLVM

AMP To OpenCL

a
rc

h

in
d

e
p

e
n

d
e

n
t

a
rc

h

d
e

p
e

n
d

e
n

t

OpenCL Runtime

LLVM IR

OpenCL C Host Binary

runtime

compile time

Optimization Notice

C++ AMP
Source

ShvPrk
Library

Shevlin Park Compilation Example

20

// From amp.h:

template < int N >
static void parallel_for_each(
 const extent < N > & compute_domain,
 const Kernel < index < N > > & f)
{
 // Compile kernel code.
 cl_kernel k = CompileKernel(_amp_program(),
 _amp_kernel_name(f),
 device);

 // Set kernel arguments.
 int args = _amp_kernel_arg_count(fn);
 for(int i = 0; i < args; ++i)
 {
 const void * ptr = _amp_kernel_arg_ptr(…);
 int size = _amp_kernel_arg_size(…);
 SetKernelArg(k, i, ptr, size);
 }

 // Enqueue kernel object.
 EnqueueKernel(queue, k, compute_domain);
}

Shevlin Park’s implementation of parallel_for_each only relies on (_amp_*)
intrinsics to access OpenCL kernel code

Software and Services Group

Clang

LLVM

AMP To OpenCL

a
rc

h

in
d

e
p

e
n

d
e

n
t

a
rc

h

d
e

p
e

n
d

e
n

t

OpenCL Runtime

LLVM IR

OpenCL C Host Binary

runtime

compile time

Optimization Notice

C++ AMP
Source

ShvPrk
Library

Clang generates same code as for any C++ program. Keyword
“restrict(amp)” just adds LLVM metadata.

Before AMP-to-OpenCL pass:

define void @lambda_body(
 %struct.lambda_body_struct* nocapture %this,
 %"class.concurrency::index"* nocapture %i)
{
 …
 %arrayidx.i = getelementptr addrspace(1)* %1, i32 %0
 %2 = load i32 addrspace(1)* %arrayidx.i
 %add = add nsw i32 %2, 7
 store i32 %add, i32 addrspace(1)* %arrayidx.i, align
4, !tbaa !4
 ret void
}

!amp.restrict = !{!0}

!0 = metadata !{void (%struct.lambda_body_struct*,
%"class.concurrency::index"*)* @lambda_body}

declare i8* @_shvprk_program()…

Shevlin Park Compilation Example

21

Software and Services Group

Clang

LLVM

AMP To OpenCL

a
rc

h

in
d

e
p

e
n

d
e

n
t

a
rc

h

d
e

p
e

n
d

e
n

t

OpenCL Runtime

LLVM IR

OpenCL C Host Binary

runtime

compile time

Optimization Notice

C++ AMP
Source

ShvPrk
Library After AMP-to-OpenCL pass:

declare void @lambda_body(
 %struct.lambda_body_struct* nocapture %this,
 %"class.concurrency::index"* nocapture %i)

@__shvprk_program = internal constant [3666 x i8]
 c"// OpenCL C Code for the lambda (next slide)... "

define internal i8* @_shvprk_program()
{
 ret i8* getelementptr inbounds (
 [3666 x i8]* @__shvprk_program, i32 0, i32 0)
}

define internal i8* @_shvprk_kernel_name(i8*) {...}
define internal i32 @_shvprk_kernel_arg_count(i8*)
{...}
define internal i8* @_shvprk_kernel_arg_ptr(i8*, i8*,
i32) {...}
define internal i32 @_shvprk_kernel_arg_size(i8*, i32)
{...}

Shevlin Park Compilation Example

22

AMP To OpenCL pass translates restrict(amp) code to OpenCL kernels and
defines the intrinsics for use by the runtime library

Software and Services Group

Clang

LLVM

AMP To OpenCL

a
rc

h

in
d

e
p

e
n

d
e

n
t

a
rc

h

d
e

p
e

n
d

e
n

t

OpenCL Runtime

LLVM IR

OpenCL C Host Binary

runtime

compile time

Optimization Notice

C++ AMP
Source

ShvPrk
Library OpenCL C:

__kernel void k_lambda_body(i32 __global*arg1,
 i32 arg2)
{
 // Kernel prolog.
 _class_concurrency__array_view arg0;
 arg0._0._0._0._0 = arg1;
 arg0._0._0._0._1._0._0[0] = arg2;
 _class_concurrency__index __index;
 __index._0._0[0] = get_global_id(0);
 _class_concurrency__index *_i = &__index;

 // _entry:
 i32 *_arrayidx_i_i_i = &_i[0]._0._0[0];
 i32 _1 = *_arrayidx_i_i_i;
 i32 __global**__ptr_i = &arg0._0._0._0._0;
 i32 __global*_2 = *__ptr_i;
 i32 __global*_arrayidx_i = &_2[_1];
 i32 _3 = *_arrayidx_i;
 i32 _add = _3 + 7;
 *_arrayidx_i = _add;
 return;
}

Shevlin Park Compilation Example

23

Generated code is standard OpenCL C, to be compiled at run time

Software and Services Group Optimization Notice

Shevlin Park Runtime Example

24

int data1[N], data2[N];

array_view < int, 1 > av1(N, data1);

array_view < int, 1 > av2(N, data2);

parallel_for_each(data_av.extent,
 [] (index<1> i) restrict(amp)
{
 av1[i] = av2[i] + 7;
});

parallel_for_each(data_av.extent,
 [] (index<1> i) restrict(amp)
{ av1[i] = av2[i] + 7; });

av1.synchronize();

// av1 destructor

C++ AMP Source

clGetPlatformIDs (per process)
clGetDeviceIDs (per process)
clCreateContext (per process)
clCreateBuffer

clCreateBuffer

clCreateCommandQueue (per accelerator_view)
clCreateProgramWithSource (per trans. unit)
clBuildProgram (per translation unit)
clCreateKernel
clSetKernelArg (per captured variable)
clEnqueueNDRangeKernel

clCreateKernel
clSetKernelArg (per captured variable)
clEnqueueNDRangeKernel

clEnqueueMapBuffer

clEnqueueUnmapMemObject

Generated OpenCL Runtime Calls

Shevlin Park’s C++ AMP implementation maps
well to OpenCL runtime API calls

Software and Services Group Optimization Notice

Performance Analysis Overview*

Workloads & Workload Porting:

• 4 Workloads: SGEMM,
Convolution, Histogram, FFT

• Ports are generally “naive ports”
parallelized with few hours
porting effort

• No ninja workload tuning to the
programming model

• No ninja OpenCL optimization, no
ninja C++AMP employed

Benchmarking Machine:

• IVB CPU @2.6 GHz

• IVB HD Graphics 4000 @650-
1250 MHz (turbo)

Software Environment & Tools:

• Windows 7 64 bit (32-bit exes)

• Windows 8 64 bit (WARP device)

• IVB HD Graphics 4000 Driver
15.28.7

• Visual Studio 2012

• Intel® SDK for OpenCL applications

25

* Software and workloads used in performance tests described in this presentation may have been optimized for performance only on Intel

microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,

operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and

performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products.

Software and Services Group Optimization Notice

Performance Data (GPU)

0

0.5

1

1.5

2

2.5

SGEMM Convolution Histogram FFT

R
e

la
ti

ve
 P

e
rf

o
rm

an
ce

(S

h
ev

lin
 P

ar
k=

1
.0

)

Workload

Shevlin Park C++ AMP OpenCL VS2012 C++ AMP

• SGEMM performance improved
due to constant folding (and then
loop unrolling) not available in
OpenCL C

• Small (<~10%) penalty for
OpenCL source source

translation in most cases

• VC++ 2012 C++ AMP exhibits
DX11 buffer model memory
transfer cost

– OpenCL and Shevlin Park utilize
OpenCL shared memory buffers
(CL_MEM_USE_HOST_PTR)

– Computation ‘dense’ workloads
(SGEMM, Convolution) affected
less

26

Software and Services Group Optimization Notice

Performance Data (CPU)

0

0.5

1

1.5

2

2.5

SGEMM Convolution Histogram FFT

R
e

la
ti

ve
 P

e
rf

o
rm

an
ce

(S

h
ev

lin
 P

ar
k=

1
.0

)

Workload

Shevlin Park C++ AMP OpenCL VS2012 C++ AMP

• SGEMM performance improved
due to constant folding (and then
loop unrolling) not available in
OpenCL C

• Penalty for OpenCL source

source translation is large in some
cases

• For these workloads, the DX11
WARP device (CPU DX11 device
implementation) used by VS2012
C++ AMP appears less optimized
than OpenCL

27

Software and Services Group Optimization Notice

Performance Observations and Analysis

• C++ AMP enables ‘whole platform optimizations’ not
necessarily available to OpenCL

– SGEMM performance improved due to constant folding across
host - device boundary (and then loop unrolling)

– Other optimizations could be possible with more compiler
education of parallel_for_each

• Small (<~10%) penalty for OpenCL source source

translation in most cases

– But, significant in CPU FFT (~100% penalty)

– SPIR would likely help by avoiding extra round trip through
OpenCL C

28

Software and Services Group Optimization Notice

Conclusions

• C++ AMP can be successfully implemented in
Clang/LLVM, with OpenCL as a runtime

– So, C++ AMP could be cross platform!

• We are really looking forward to SPIR for OpenCL

– SPIR will greatly expand the useful domain of OpenCL to
machine tools

• Compilers for new languages

• Even heterogeneous ones like C++ AMP!

– Specifically for us, SPIR will greatly improve the quality of our
C++ AMP implementation

• Clang/LLVM are fantastic tools for making prototype
compilers accessible projects

– Thank you!!

29

Software and Services Group Optimization Notice

30

Questions?

Software and Services Group Optimization Notice

C++AMP restrict Restrictions

• The function can call only functions that
have the restrict(direct3d) clause.

• The function must be inlinable.

• The function can declare only int, unsigned
int, float, and double variables, and classes
and structures that contain only these
types.

• Lambda functions cannot capture by
reference and cannot capture pointers.

• References and single-indirection pointers
are supported only as local variables and
function arguments.

• Recursion.

• Variables declared with the volatile keyword.

• Virtual functions.

• Pointers to functions.

• Pointers to member functions.

• Pointers in structures.

• Pointers to pointers.

• goto statements.

• Labeled statements.

• try, catch, or throw statements.

• Global variables.

• Static variables. Use tile_static Keyword instead.

• dynamic_cast casts.

• The typeid operator.

• asm declarations.

• Varargs.

31

• These restrictions are similar to other GPGPU programming

languages.

• Microsoft expects the restrictions to ease over time.

http://msdn.microsoft.com/en-us/library/12a04hfd(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/hh388954(v=vs.110).aspx

Software and Services Group Optimization Notice

C++11 Lambda Example

const int N = 10;

int a[N] = {1, }, b[N] = {2, }, c[N];

// Lambda computing c[i] = a[i] + b[i]. Could later be invoked via sum object.

auto sum = [&, N] (int i) restrict(cpu)

{

 if(i < N)

 c[i] = a[i] + b[i];

};

32

• auto sum: This is a declaration of a lambda object.

• [&, N]: This is the capture expression. This expression says:
• By default, capture by reference. Any variables used in the body not explicitly

captured are captured by this semantic.

• Capture N by value.

• (int i): This is the argument list, accepting one integer i.

• restrict(cpu): This is the modifier declaration.

• {…}: The body of the lambda, using captured variables and arguments.

Software and Services Group Optimization Notice

Code Sample
(from: http://msdn.microsoft.com/en-us/library/hh265136.aspx)

#include <amp.h>

#include <iostream>

using namespace concurrency;

const int size = 5;

void CppAmpMethod() {

 int aCPP[] = {1, 2, 3, 4, 5};

 int bCPP[] = {6, 7, 8, 9, 10};

 int sumCPP[size];

 // Create C++ AMP objects.

 array_view<const int, 1> a(size, aCPP);

 array_view<const int, 1> b(size, bCPP);

 array_view<int, 1> sum(size, sumCPP);

 sum.discard_data();

 parallel_for_each(

 // Define the compute domain, which is the set

 // of threads that are created.

 sum.extent,

 // Define the code to run on each thread on the

 // accelerator.

 [=](index<1> idx) restrict(amp)

 {

 sum[idx] = a[idx] + b[idx];

 }

);

 // Print the results. The expected output is "7, 9,

 // 11, 13, 15".

 for (int i = 0; i < size; i++) {

 std::cout << sum[i] << "\n";

 }

}

33

Software and Services Group Optimization Notice

Optimization Notice

34

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that

are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and

other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on

microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended

for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for

Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information

regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Software and Services Group Optimization Notice

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.
Intel may make changes to specifications and product descriptions at any time, without notice.
All products, dates, and figures specified are preliminary based on current expectations, and are subject to
change without notice.
Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on request.
Code names featured are used internally within Intel to identify products that are in development and not yet
publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use
code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal
code names is at the sole risk of the user
Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.
Intel, the Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom Inside, Intel Core,
Intel Inside, Intel Inside logo, are trademarks of Intel Corporation in the U.S. and other countries.
OpenCL and OpenCL logo are trademarks of Apple Inc. used by permission by Khronos
*Other names and brands may be claimed as the property of others.

Copyright © 2010-2012. Intel Corporation.

35

