AArch64: ARM’s 64-bit architecture

Tim Northover

November 8, 2012

£ DA

‘ The Architecture for the Digital World® ARM

Outline

AArch64 Architecture
AArch64 Backend
Testing the Backend

Interesting Curiosities
Load-store Patterns
Templated Operands
Conditional Compare

Creating the Backend

Future Ideas

The Architecture for the Digital World®

A

RM

AArch64 Architecture

So what is AArch64 then?

£ DA

The Architecture for the Digital World® ARM

AArch64 Architecture

So what is AArch64 then?

m ARM’s new 64-bit architecture.

= RN Ge
The Architecture for the Digital World®

A

RM

AArch64 Architecture

So what is AArch64 then?

m ARM’s new 64-bit architecture.

m RISC-like; fixed 32-bit instruction width.

= RN Ge
The Architecture for the Digital World®

A

RM

AArch64 Architecture

So what is AArch64 then?

m ARM’s new 64-bit architecture.

m RISC-like; fixed 32-bit instruction width.

m 31 general purpose registers, x0-x30 with 32-bit
subregisters w0-w30 (+PC, +SP, +ZR)

The Architecture for the Digital World®

'ARM

LN

AArch64 Architecture

So what is AArch64 then?
m ARM’s new 64-bit architecture.
m RISC-like; fixed 32-bit instruction width.

m 31 general purpose registers, x0-x30 with 32-bit
subregisters w0-w30 (+PC, +SP, +ZR)

m Always an FPU; 32 registers, each 128-bits wide.

®
The Architecture for the Digital World® ARM

. ' SR
a3 ‘ The Architecture for the Digital World® ARM

AArch64 Architecture

So what is AArch64 then?
m ARM’s new 64-bit architecture.
m RISC-like; fixed 32-bit instruction width.

m 31 general purpose registers, x0-x30 with 32-bit
subregisters w0-w30 (+PC, +SP, +ZR)

m Always an FPU; 32 registers, each 128-bits wide.
m About as nice as a compiler could hope for.

o
o)

I
Il

Tiny Example

int foo(int val) {
int newval

= bar(val);
return val + newval;
¥

RN Ge

The Architecture for the Digital World®

Tiny Example

int foo(int val) {
int newval = bar(val);
return val + newval;

¥
Could compile to

foo:
sub sp, sp, #16
stp x19, x30, [spl
mov wl9, w0
bl bar
add w0, w0, wil9
1dp x19, x30, [spl
add sp, sp, #16
ret

k itecture for the Digital World® A

Tiny Example

int foo(int val) {
int newval = bar(val);
return val + newval;

}

Could compile to

foo: foo:
sub sp, sp, #16 sub sp, sp, #8
stp x19, x30, [spl strd r4, ri4, [sp]
mov wl9, wO mov r4, r0
bl bar bl bar
add w0, wO, wil9 add r0, r0, r4
ldp x19, x30, [spl ldrd r4, ri14, [sp]
add sp, sp, #16 add sp, sp, #8
ret bx 1r

h The Architecture for the Digital World®

Outline

AArch64 Backend

RN Ge

The Architecture for the Digital World®

AArch64 Backend: Goals

What we wanted:

£ DA

‘ The Architecture for the Digital World® ARM

AArch64 Backend: Goals

What we wanted:

m LLVM backend targeting ELF output on Linux.
m Integrated assembler on by default.

= RN Ge
The Architecture for the Digital World®

A

RM

AArch64 Backend: Goals

What we wanted:

m LLVM backend targeting ELF output on Linux
m Integrated assembler on by default.

m Using up to date LLVM APIs and style.

The Architecture for the Digital World®

'ARM

LN

L» ‘ The Architecture for the Digital World® A

AArch64 Backend: Goals

What we wanted:
m LLVM backend targeting ELF output on Linux.
m Integrated assembler on by default.
m Using up to date LLVM APIs and style.
m Strong testing.
m Compiling standard-compliant C and C++.

o
o)
I
Il

D¢
®

M

k ‘ The Architecture for the Digital World® ARM@

AArch64 Backend: Goals

What we wanted:
m LLVM backend targeting ELF output on Linux.
m Integrated assembler on by default.
m Using up to date LLVM APIs and style.
m Strong testing.
m Compiling standard-compliant C and C++.
What we didn’t want:
m Optimisation less important (for now!).
m Features unused by C and C++ were lower priority.

Qe

AArch64 Backend: Tests Passed

m C++98 and C99 well supported.

m SPEC2000 and SPEC2006 run successfully (e.g.
gcc, perl).

m Self-built clang and LLVM pass the regression
testsuite, both as shared libraries and static (takes
12 hours to run on a model).

m NEON work ongoing, but not ready for use.
m LLVM testsuite has about 10 failures.

m MC Hammer passes on scalar instructions (see
later).

] = = =

L Ao deogawore ARM

k ‘ The Architecture for the Digital World® A

Getting Started

There’s a model and basic Linux filesystem available at
http://www.linaro.org/engineering/armv8/

m Model of a fixed, reasonably complete system.
m Linux filesystem (OpenEmbedded) to boot it.
m Toolchain for headers, linkers, ...
m Used for our internal tests currently.
Try to compile your favourite program! See what breaks it!

o = = =

http://www.linaro.org/engineering/armv8/

Outline

Testing the Backend

RN Ge

The Architecture for the Digital World®

Lower Level Testing: MC Hammer

m Implemented by Richard Barton and presented at
Euro-LLVM.

m |dea: automatically test all 32-bit bitpatterns against
another (independent) implementation.

m Ensures InstPrinter, AsmParser, Disassembler and
MCCodeEmitter are consistent and correct.

m Covers all bitpatterns, but only checks valid assembly.

o @ = Da
®

b et deDgavore ARM

MC Hammer on AArch64

How did it help us?

m Executed on all builds for all scalar instructions.

m Directed us towards the useful regression tests.

m Still need good regression tests to save time and
(hopefully) prevent any bad commit.

The Architecture for the Digital World®

'ARM

LN
®

Testing the Hard Parts: Relocations

m Do the numbers match? Are they filtered through the
umpteen layers of indirection properly? E.g.
MO_L012 — VK_AARCH64_L012

— fixup_a64_add_lol2

— R_AARCH64_ADD_ABS_L0O12_NC
— 0x115

m | think so, but. ..

m Have to run both llvm-objdump (check names) and
elf-dump (check numerics) to test everything.

CIRN= = = = ©Dac
4

L» ‘ The Architecture for the Digital World® AR

Testing the Hard Parts: CodeGen

m Can never be quite sure about all the edge cases.
m Regression tests for each pattern, of course.

m No revolutionary new solution here.

m Ultimately, running real code is the only way.

D¢
®

M

Testing the Hard Parts: Misc

El Exceptions
m In principle, straightforward DWARF style on
AArch64.

m But, small model: code and data in single 4GB space.
m Implies relocations need 64-bit (even PC-relative
need +4GB and -4GB).

m Took a couple of tries, mixed in with link-time failures.

o
o)
I
1]
Il

'ARM

Testing the Hard Parts: Misc

El Exceptions

m In principle, straightforward DWARF style on
AArch64.

m But, small model: code and data in single 4GB space.
m Implies relocations need 64-bit (even PC-relative
need +4GB and -4GB).
m Took a couple of tries, mixed in with link-time failures.
B Debugging information

m Another one that can look OK but be wrong.
m Even harder to test beyond “Looks ok to me. Maybe.”

o P Ha o
®

b s meogavere ARM

Outline

Interesting Curiosities

The Architecture for the Digital World®

Load-store Patterns: the Problem

Operand<i64>,
ComplexPattern<i64,
let MIOperandInfo =
}
// ldr x0,
def LOAD

[sp,

2,
(ops GPR64:¢$base,
#16]

"SelectAddress"> {

Inst<(outs GPR64:$Rd),
"ldr $R4,

imm:$offset);
$addr",
[(set GPR64:$R4,
m Needs custom AsmParser

(ins addr_op:$addr),

(load addr_op:$addr))]l>;

= & = z = DA¢
l The Architecture for the Digital World® A

Il
0

®

Load-store Patterns: the Problem

Operand<i64>,
ComplexPattern<i64,
let MIOperandInfo =
}
// ldr x0,
def LOAD

[sp,

2,
(ops GPR64:¢$base,
#16]

"SelectAddress"> {

Inst<(outs GPR64:$Rd),
"ldr $R4,

imm:$offset);

$addr",
[(set GPR64:$R4,

(ins addr_op:$addr),

m Needs custom AsmParser, InstPrinter

(load addr_op:$addr))]l>;

o> <P = = = 9ac
] ®
‘ The Architecture for the Digital World® ARM

Load-store Patterns: the Problem

Operand<i64>,
ComplexPattern<i64,
let MIOperandInfo =
}
// ldr x0,
def LOAD

[sp,

2,
(ops GPR64:¢$base,
#16]

"SelectAddress"> {

Inst<(outs GPR64:$Rd),
"ldr $R4,

imm:$offset);

$addr",
[(set GPR64:$R4,

(ins addr_op:$addr),

(load addr_op:$addr))]>;
m Needs custom AsmParser, InstPrinter, Disassembler

o> <P = = = 9ac
] ®
‘ The Architecture for the Digital World® ARM

def addr_op

Load-store Patterns: the Problem

Operand<i64>,
ComplexPattern<i64,
let MIOperandInfo

}

2,
(ops GPR64:¢$base,
// ldr x0,

"SelectAddress"> {
[sp,
def LOAD

imm:$offset);
#16]

Inst<(outs GPR64:$Rd), (ins addr_op:$addr),
"ldr $Rd, $addr",
[(set GPR64:$Rd, (load addr_op:$addr))]>;
m Needs custom AsmParser, InstPrinter, Disassembler
and Encoder.

The Architecture for the Digital World®

Load-store Patterns: the Problem

def addr_op : Operand<i64>,
ComplexPattern<i64, 2, "SelectAddress"> {
let MIOperandInfo = (ops GPR64:$base, imm:$offset);

}

// ldr x0, [sp, #16]

def LOAD : Inst<(outs GPR64:$Rd), (ins addr_op:$addr),
"ldr $Rd, $addr",
[(set GPR64:$Rd, (load addr_op:$addr))]>;

m Needs custom AsmParser, InstPrinter, Disassembler
and Encoder.

m Complex, duplicated C++ selection code (1dr x0,
[x3, wh, sxtw #3]).

T The Architecture for the Digital World®

// ldr x0, [sp,
def LOAD

Load-store Patterns: the Solution

#16]

Inst<(outs GPR64:$Rd4),

(ins GPR64:$Rn, uimml2:$offset),
"ldr $R4,

[$Rn, $offset]",

[?77]>;

m All the MC components become much simpler: a
normal instruction.

m Patterns not simpler.

The Architecture for the Digital World®

D¢

Load-store Patterns: the Solution

// ldr x0, [sp, #16]

def LOAD : Inst<(outs GPR64:$Rd),
(ins GPR64:$Rn, uimml2:$offset),
"ldr $Rd, [$Rn, $offsetl", [777]>;

m All the MC components become much simpler: a
normal instruction.

m Patterns not simpler.

Need to construct patterns with varying shapes (e.g.
shift/no shift). Aha! Inner multiclass should do this.

h, The Architecture for the Digital World®

Load-store Patterns: the Solution
// ldr x0, [sp,
def LOAD

#16]
Inst<(outs GPR64:$Rd4),
(ins GPR64:$Rn,
"ldr $R4,

[$Rn,

$offset]",
normal instruction.
m Patterns not simpler.

uimmi2: $offset),
[?77]>;
m All the MC components become much simpler: a

Need to construct patterns with varying shapes (e.g.

shift/no shift). Aha! Inner multiclass should do this.
H Need the contents of those DAGs to vary by

instruction. Aha! Inner multiclass should do this

@r «Fr<=r«=H» T 9AC
b s meogavere ARM

Load-store Patterns: the Solution
// ldr x0, [sp,
def LOAD

#16]
Inst<(outs GPR64:$Rd4),
(ins GPR64:$Rn,
"ldr $R4,

[$Rn,

$offset]",
normal instruction.
m Patterns not simpler.

uimmi2: $offset),
[?77]>;
m All the MC components become much simpler: a

Need to construct patterns with varying shapes (e.g.

shift/no shift). Aha! Inner multiclass should do this.
H Need the contents of those DAGs to vary by

instruction. Aha! Inner multiclass should do this

B> «Fr <= <> E 9AC
b et eDgavore ARM

Load-store Patterns: the Solution

// ldr x0, [sp, #16]

def LOAD : Inst<(outs GPR64:$Rd),
(ins GPR64:$Rn, uimml2:$offset),
"ldr $Rd, [$Rn, $offset]", [777]>;

m All the MC components become much simpler: a
normal instruction.
m Patterns not simpler.
Need to construct patterns with varying shapes (e.g.
shift/no shift). Aha! Inner multiclass should do this.
H Need the contents of those DAGs to vary by
instruction. Aha! Inner multiclass should do this
H Oh dear.

] = =

‘ The Architecture for the Digital World® AR

Load-store Patterns: Worthwhile?

The big question is, was it worth it?
m TableGen was horribly ugly: foreach, subst

m Could be improved hugely by improving TableGen.

m Reduces C++ complexity; increases TableGen
complexity.

m Initial patch: +834 lines, -1288 lines.

RM

The Architecture for the Digital World® A

M ‘ The Architecture for the Digital World® A

Load-store Patterns: Worthwhile?

The big question is, was it worth it?
m TableGen was horribly ugly: foreach, subst
m Could be improved hugely by improving TableGen.

m Reduces C++ complexity; increases TableGen
complexity.

m Initial patch: +834 lines, -1288 lines.
m Undecided.

RM

Templating Operands: A Useful Trick

m Problem: groups of similar operands. Mostly similar
handling but details slightly different.

The Architecture for the Digital World®

'ARM

Q
®

Templating Operands: A Useful Trick

}

m Problem: groups of similar operands. Mostly similar
handling but details slightly different.
m Solution: C++ templates.
def uimm6_asmoperand :
let PredicateMethod = "isUImm<6>";

AsmOperandClass {
does with the strings.

m Requires certain accommodation in what TableGen

CIRT= =» <= : 9Dace
4

Conditional Compare

ccemp x0, x1,

#12, ge

The Architecture for the Digital World®

A

RN Ge

RM

Conditional Compare

ccemp x0, x1,

#12, ge

m Check NZCV flags for > (signed).

= RN Ge
The Architecture for the Digital World®

A

RM

Conditional Compare

ccmp x0, x1, #12, ge
m Check NZCV flags for > (signed).
NZCV.

m |f previous comparison passed, do this one and set

= RN Ge
The Architecture for the Digital World®

A

RM

Conditional Compare

ccmp x0, x1, #12, ge
m Check NZCV flags for > (signed).
NZCV.

m |f previous comparison passed, do this one and set

m Otherwise, set NZCV to 12 (N=1, Z=1, C=0, V=0)

= RN Ge
The Architecture for the Digital World®

A

RM

Before CCMP

r0 >= r1 && r2 >= r3

RN Ge

The Architecture for the Digital World®

Before CCMP

r0 >= r1 && r2 >= r3

Reasonably simple optimisation on ARM:
cmp 10,

cmpge r2, r3

bge good

ri

The Architecture for the Digital World®

RN Ge

Before CCMP

r0 >= rl1 && r2 >= r3
Reasonably simple optimisation on ARM:
cmp r0, ril
cmpge r2, r3
bge good
Generalisations:

m Any number of > comparisons.

The Architecture for the Digital World®

RN Ge

Before CCMP

r0 >= r1 && r2 >= r3

Reasonably simple optimisation on ARM:

cmp r0, ril
cmpge r2, r3
bge good
Generalisations:

m Any number of > comparisons.

m Or with < instead of And with >.

The Architecture for the Digital World®

RN Ge

Before CCMP

r0 >= rl1 && r2 >= r3
Reasonably simple optimisation on ARM:

cmp r0, ri
cmpge r2, r3
bge good
Generalisations:
m Any number of > comparisons.
m Or with < instead of And with >.
m Certain compatible comparisons.

h_ The Architecture for the Digital World®

Before CCMP

r0 >= rl1 && r2 >= r3
Reasonably simple optimisation on ARM:

cmp r0, ri
cmpge r2, r3
bge good
Generalisations:
m Any number of > comparisons.
m Or with < instead of And with >.
m Certain compatible comparisons.
But there are limitations.

L The Architecture for the Digital World®

With CCMP

x0 >= x1 && x2 == x3
First try:
cmp r0, ril
cmpge r2, r3
bXX good

The Architecture for the Digital World®

RN Ge

With CCMP

x0 >= x1 && x2 == x3
First try:
cmp r0, ril
cmpge r2, r3
bXX good
But with CCMP:
cmp x0, x1
ccmp

The Architecture for the Digital World®

RN Ge

With CCMP

x0 >= x1 && x2 == x3
First try:
cmp r0, ril
cmpge r2, r3
bXX good
But with CCMP:
cmp x0, x1
ccmp

ge

The Architecture for the Digital World®

RN Ge

With CCMP

x0 >= x1 && x2 == x3
First try:
cmp r0, ril
cmpge r2, r3
bXX good
But with CCMP:
cmp x0, x1
ccmp X2, x3,
b.eq good

ge

The Architecture for the Digital World®

RN Ge

With CCMP

x0 >= x1 && x2 == x3
First try:
cmp r0, ril
cmpge r2, r3
bXX good
But with CCMP:
cmp xO0, x1
ccmp X2, x3, <ne>,
b.eq good

ge

The Architecture for the Digital World®

RN Ge

With CCMP

x0 >= x1 && x2 == x3
First try:
cmp r0, ril
cmpge r2, r3
bXX good
But with CCMP:
cmp x0, x1
ccmp X2, x3, #O0,
b.eq good

ge

The Architecture for the Digital World®

RN Ge

Outline

Creating the Backend

.

RN Ge

The Architecture for the Digital World®

Summary of Effort

What did it take to create the backend?

m 1.5 months on basic layout.

m Then 4 months implementing instructions

systematically.
m Then 4 months on integration (ABI, bugs, PIC, TLS,
).

Time was increased by desire for full MC layer support for
all instructions.

h, The Architecture for the Digital World®

Phase 1: Create a Solid Base

E Compile anything:

define void @foo() { ret void }

B Create some way of creating a live value: global
variables for us, could be function parameters.

@src = global i32 0

@dst = global i32 0

define void @foo () {
%val = load i32* @src
store 132 Y%val, i32* @dst
ret void

}

B Implement ELF (relocations); asm parsing; related
instructions.

Phase 2: Implement the ISA

B Systematically implement all scalar instructions, a
slice at a time.

B Make sure assembly/encoding/. .. perfect.
B Instruction selection for obvious patterns.

A Hope was that by the end most DAG structures
covered by default.

B Implement features occasionally when necessary
instructions present: function calls, stack objects, ...

o Il = D>
®

L Ao deogawore ARM

Phase 3: Make it Work

El Phase 2 approach was mostly successful: compiled
patch.

and ran “hello world” immediately. zlib after a small

= RN Ge
The Architecture for the Digital World®

A

RM

Phase 3: Make it Work

B Phase 2 approach was mostly successful: compiled
and ran “hello world” immediately. zlib after a small
patch.

A Failed on odd corners not corresponding neatly to a
single instruction.

H E.g. jump tables, stranger SELECT_CC variants,
external symbols. . .

A Finally implemented other known large-scale
features: DWARF; exception-handling; TLS...

] = = =

b Ao deogawoe ARM

Outline

Future Ideas

- T

RN Ge

The Architecture for the Digital World®

Unimplemented Features

m MCJIT

m FastlSel

m Other memory models.

m NEON support is ongoing.

m Production-quality assembler (GNU as directives...).
m Inline Asm

o
o)
I
it

RN Ge

‘ The Architecture for the Digital World® ARM

Refactoring

E Constantlslands pass
m Bulk is identical to ARM.
m Changes to target-specific details (addressing limits
etc).
m Problem: intermixed with Thumb narrowing and more.
m Second problem: very difficult to test, needs massive
functions.

h_ The Architecture for the Digital World®

Refactoring

E Constantlslands pass
m Bulk is identical to ARM.
m Changes to target-specific details (addressing limits
etc).
m Problem: intermixed with Thumb narrowing and more.
m Second problem: very difficult to test, needs massive
functions.

A 128-bit float legalisation

m Duplication from LegalizeTypes.
m It's almost completely illegal.

h, The Architecture for the Digital World®

Infrastructure

What can we do to make AArch64 a fully supported
target?

m There will only be simulators for a while yet.
m Build bots?

m Daily tests?

m LLVM testsuite??

=] F = = £ DA

The Architecture for the Digital World® ARM

	AArch64 Architecture
	AArch64 Backend
	Testing the Backend
	Interesting Curiosities
	Load-store Patterns
	Templated Operands
	Conditional Compare

	Creating the Backend
	Future Ideas

