
LLVM and Clang on the Most Powerful Supercomputer
in the World

Hal Finkel

November 7, 2012
The 2012 LLVM Developers’ Meeting

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 1 / 27



1 Introduction
ANL and the ALCF
The BG/Q

2 The A2 Core and QPX

3 Porting LLVM and Clang

4 Results

5 Conclusion

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 2 / 27



What is Argonne National Laboratory

Argonne National Laboratory (ANL), located just outside of Chicago, is
one of the U.S. Department of Energy’s largest national laboratories for
scientific and engineering research.

We have over 1,250 scientists and engineers, and over 300 postdoctoral
researchers, in 13 research divisions and 6 national scientific user facilities.

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 3 / 27



What is the Argonne Leadership Computing Facility

The Argonne Leadership Computing Facility (ALCF) is one of two
leadership computing facilities supported by the U.S. Department of
Energy (DOE).

The ALCF provides the computational science community with
computing capability dedicated to breakthrough science and
engineering targeting at-scale run campaigns.

The ALCF is now home to Mira, a 10-petaflop IBM Blue Gene/Q
system with 49,152 compute nodes. We also continue to operate the
Intrepid, a 557-teraflop IBM Blue Gene/P system.

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 4 / 27



The Blue Gene/Q (BG/Q)

ALCF’s Mira BG/Q system:

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 5 / 27



The Blue Gene/Q (BG/Q)

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 6 / 27



The Top500 List of Supercomputing Sites

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 7 / 27



The Green500 List of Supercomputing Sites

(entries 1 through 20 are all BG/Qs; in 21st place is an Intel Xeon/MIC
cluster @ 1,380.67 MFLOPS/W)

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 8 / 27



The BG/Q Node

16 user-accessible cores, 1 system core, and 1

spare @ 1.6 GHz (204.8 peak GFLOPS)

64-bit PowerPC ISA + 4-way

double-precision SIMD

16 kB L1 D-cache, 16 kB L1 I-cache

32 MB shared L2 cache

multiversioned – supports transactional

memory and speculative execution

built in support for atomic operations

Dual memory controllers

16 GB external 1.333 GHz DDR3

42.6 GB/s DDR3 bandwidth

Network with 5D Torus topology

2 GB/s send and 2 GB/s receive

DMA with remote put/get and

collective operations

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 9 / 27



The A2 Core

The embedded 64-bit A2 core:

Two pipelines, one for floating point,

one for everything else

Four hardware threads; one

instruction dispatched to each

pipeline at each cycle from different

threads

Most instructions, including L1 load

and store, don’t stall

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 10 / 27



QPX

Quad-Vector Floating-Point (QPX) extends the regular PowerPC
floating-point registers to vectors of four: The scalar floating-point
registers alias the first element of each corresponding vector register

A scalar floating-point load splats the loaded value into all vector
elements

Single-precision floating point is supported via instruction variants
that round to single precision

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 11 / 27



QPX Instructions

vector loads and stores, both single-precision and double-precision.
Loading and storing of two “complex” values

general permutations, alignment-based permutations (to support
unaligned accesses), subvector extraction and splat

vector loads and stores of integer values, float/int conversions (but no
other integer operations)

negate, abs, negative abs, copy sign, rounding (to single precision, to
integer in various ways)

add, sub, mul, recip. est., recip. sqrt est.

mul-add, mul-sub, negative mul-add, negative mul-sub, various cross
mul-adds for complex arithmetic

compare less-than, compare greater-than, compare equal, test for NaN

generalized boolean operations, vector select

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 12 / 27



QPX Booleans

In QPX, floating point values are also booleans:

Values greater than or equal to ±0.0 are true

Values less that 0.0 or NaN are false

Instructions that produce booleans produce ±1.0

Instead of providing specific boolean operations, one instruction is
provided that takes an arbitrary truth table:

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 13 / 27



Why?

Provide a high-performance and up-to-date C/C++ compiler over the
lifetime of the machine (the fact that Clang has excellent diagnostics
and a static-analysis framework makes this even more appealing)

Provide access to other languages that use LLVM has a backend
(such as Intel’s ISPC, and various scripting languages)

Provide a platform for compiler research supporting the BG/Q

Autovectorization
Parallelization (including transactional memory and speculative
execution)
Communication-related optimizations and distributed systems

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 14 / 27



Tagged-Type Diagnostics

The tagged-type diagnostics, developed by Dmitri Gribenko, are an
important new feature in Clang that will greatly benefit the HPC
community. To my knowledge, no other compiler can produce these kinds
of warnings, and these will be extremely valuable to our users.

The wider community can also benefit by applying the relevant attributes
to, for example, some POSIX APIs.

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 15 / 27



The “Easy” Parts

Modifications to the PowerPC backend: Register definitions, calling
conventions, declaring instruction legality, patterns for basic
arithmetic operations, loads and stores, etc.

Developing an itinerary for the A2 core based on IBM’s
documentation, and making associated modifications to the subtarget
code

Adapting the Hexagon hardware loops pass to do the equivalent thing
for PowerPC

Adding support for QPX intrinsics in Clang (and developing a header
file compatible with the corresponding vendor-compiler intrinsics)

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 16 / 27



The More-Difficult Parts

Developing a basic-block autovectorizer (see the presentation from
the 2012 Euro-LLVM conference, and come to the BoF later at this
meeting)

Modifications to the SelectionDAG builder to loosen the critical-chain
restrictions

Adding support for v4i1 booleans to support QPX logical operations
(still in progress)

Cleaning up, modernizing and fixing bugs in the PowerPC backend
(IBM has recently started to help with this)

Fixing bugs elsewhere in LLVM exposed by the new target code

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 17 / 27



Boost uBlas: Benchmark 1

Dense matrix and vector operations:

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 18 / 27



Boost uBlas: Benchmark 2

Sparse matrix and vector operations:

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 19 / 27



Boost uBlas: Benchmark 3

Vector and matrix proxy’s operations:

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 20 / 27



Boost uBlas: Benchmark 4

Dense matrix and vector operations with boost::numeric::interval:

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 21 / 27



TSVC

The first few tests from the TSVC autovectorization benchmark:

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 22 / 27



TSVC

The first few tests from the TSVC autovectorization benchmark (without
vectorization):

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 23 / 27



TSVC

The first few tests from the TSVC autovectorization benchmark (without
vectorization, compared to gcc for the BG/Q):

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 24 / 27



Future Work

In addition to general LLVM work:

Full support for generating all QPX instructions (will require further
enhancement to the BB vectorizer and the loop vectorizer, more
target-level DAG combiner enhancements, and support for the
single-precision-rounded variants) and support for vendor-supplied
vectorized math libraries

More PowerPC backend enhancements: For example, better handling
of condition registers (especially how they are spilled)

Parallelization support (especially, but not limited to, OpenMP)

Higher level loop transformations (using Polly)

MPI-specific optimizations

Make LLVM (with Clang) a powerful force in HPC!

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 25 / 27



Acknowledgements

From idea to production-stable, high performance, autovectorizing
compiler for the BG/Q is a long road (and we’re not quite there yet), and
I’ve had a lot of help:

Roman Divacky, Tobias von Koch, and others who have contributed
to the PowerPC backend (now including several people from IBM’s
LTC: Bill Schmidt, Will Schmidt, Ulrich Weigand, Adhemerval
Zanella, and Peter Bergner)

Tobi Grosser, Nadav Rotem, and others who have helped with
development of the vectorizer

Andy Trick, Jakob S. Olesen (for answering many questions on
scheduling, register allocation, etc.)

The LLVM and Clang development communities

ALCF, ANL and DOE

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 26 / 27



Science Areas

(science areas at NERSC – from a 2009 presentation by John Shalf)

Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November 7, 2012 27 / 27


	Introduction
	ANL and the ALCF
	The BG/Q

	The A2 Core and QPX
	Porting LLVM and Clang
	Results
	Conclusion
	Extra Slides

