
Taking it From The Source

Thursday, November 29, 12

This is a research project conducted under the Defense
Advanced Research Projects Agency (DARPA) Cyber

Fast Track program

PI: Jared Carlson
Principal

GoToTheBoard

Brought To You By....

Thursday, November 29, 12

The views expressed are those of the author and
do not reflect the official policy or position of the
Department of Defense or the U.S. Government

Disclaimer

Thursday, November 29, 12

A Few Other Notes
• This project is ongoing and this presentation

is subject to a public release

• This means material is a little older than what’s
actually in development.

Thursday, November 29, 12

Project Goals

• Create a tool to find
exploitable bugs within a
“normal” environment.

• Illustrate consequences of
these bugs.

• Educate and interact with
the developer.

• Allow for community
improvement and sharing.

Thursday, November 29, 12

Thursday, November 29, 12

Static Analysis

Function
Graph

Data
Dependency

Hypothesis
Engine

Fuzzer

Thursday, November 29, 12

Static Analysis

Function
Graph

Hypothesis
Engine

Fuzzer

Thursday, November 29, 12

Static Analysis

Function
Graph

Hypothesis
Engine

Fuzzer

Static Analysis

•Rewrite scan-build/analyzer
in python for integration
purposes

•Digest & Export JSON
rather than HTML for
comms

•Reuse existing
infrastructure and passes
for more exhaustive
analysis

•Expand using LLVM
passes

Thursday, November 29, 12

Static Analysis

Function
Graph

Data
Dependency

Thursday, November 29, 12

Static Analysis

Function
Graph

Data
Dependency

Function Graph
•We construct our map
of the program.

•Use this for fuzzing
entry points.

• “Maps” the static to
dynamic

Thursday, November 29, 12

Function
Graph

Data
Dependency

Hypothesis
Engine

Thursday, November 29, 12

Function
Graph

Data
Dependency

Hypothesis
Engine

Data Dependencies

•Look at data, local
variables, etc...

•Taint analysis
•Parse AST
•Store dependency
relationships into
“facts”

Thursday, November 29, 12

Data
Dependency

Hypothesis
Engine

Fuzzer

Thursday, November 29, 12

Data
Dependency

Hypothesis
Engine

Fuzzer Hypothesis Engine

•Hypothesis Engine
tracks what succeeds
and what does not.

•Simple rules engine...

Thursday, November 29, 12

Static Analysis

Dependency

Hypothesis
Engine

Fuzzer

Thursday, November 29, 12

Static Analysis

Dependency

Hypothesis
Engine

Fuzzer

Fuzzer

•Utilize the LLDB
python framework to
drive the fuzzing

•Allows us to easily
recover register, stack
information, etc.

•Python allows for easy
extensions...

Thursday, November 29, 12

Static Analysis

Function
Graph

Data
Dependency

Hypothesis
Engine

Fuzzer

Thursday, November 29, 12

Static Analysis

• Rewriting the scan-build/analyzer
PERL scripts to Python scripts...

• Why? Masochism? Maybe a little...

• Comprehensive, this makes it easier to
take a python Fuzzer and have it
interact with the static analyzer.

Static Analysis

Thursday, November 29, 12

In Depth Analysis

• With a rewrite, we can make it easier to:

• Run non-standard checkers when
needed, not just when aware

• Import custom checkers:
clang++ -Xclang -load -Xclang ./MainCallChecker.so -Xclang

-analyzer-checker=example.MainCallChecker --analyze global_static.cpp

Thursday, November 29, 12

Call Function
Graph

• Anchors our static to the dynamic engine.

• We want to do this offline so we tie into
hypothesis, after all this is a development tool.

• Ultimately want to present the developer with
a suggestion for another approach.

• Pie in the sky? probably, but can’t get it right
unless you try...

Function
Graph

Thursday, November 29, 12

Call Function
Mappings...

Function Variable Type Input to
SubFunction

_start argv char ** main

main user_info struct param* defaults

defaults diag_level unsigned int set_depth

set_depth cur_wrk_dir char* readenv

Thursday, November 29, 12

Data Dependency
• Find local variables, sources,

understand how these taint downstream
objects.

• Leverage the CFG to follow the byte
trail.

• Don’t forget, we can read/write to
memory if we absolutely need to...

Data
Dependency

Thursday, November 29, 12

Local Tainting

• By understanding the CFG, we can even
directly write to memory using LLDB to
look at crash severity, i.e. write a test
payload.

• Write “AAAA...” = 0x41414141...” or other
recognizable patterns into memory to taint.

Thursday, November 29, 12

Hypothesis Engine
• This is a development tool, there ought

to be a “goal”!

• Let’s face it, incorrect assumptions lead
to serious problems within a project.

• We can present information in this
format as well as present “hypothesis”
for how to break the software -
understand the limits!

Hypothesis
Engine

Thursday, November 29, 12

Facts Engine
• Using PYKE, a Python based A.I. engine that

mirrors Prolog in terms of its functionality.

• Excellent fact storage.

• Draw conclusions, “goals” in PYKE Parlance, to
deduce information.

• PYKE’s use of a “plan” for general or specific use
cases is a valuable piece for our architecture.

Thursday, November 29, 12

Conclusions

• Draw on conclusions reached

• At a later stage, comments or other
syntactic elements could be incorporated
to test developer’s goals.

Thursday, November 29, 12

Dynamic
Instrumentation

• Simple implementation for this project is
a fuzzer.

• Incorporate some aspects of Sulley to
leverage LLDB rather than PyDBG

• Record keeping, data generation
most notably.

Fuzzer

Thursday, November 29, 12

Crash Investigation
• The developer doesn't want just a log of crashes.

Understanding why it crashed and severity is key!

• This means generate the crash, use LLDB to
store register information, jump up a stack frame
to create a hypothesis as to the crash.

• Can test against additional static analysis, as well
as generating additional dynamic tests of the
hypothesis.

Thursday, November 29, 12

Example of Crash
Register Information:
General Purpose Registers:
 rax = 0x0000000000000000
 rbx = 0x00007fff54dfcd00
 rcx = 0x00007fff54dfcce8
 rdx = 0x0000000000000000
 rdi = 0x00000000000004cf
 rsi = 0x0000000000000006
 rbp = 0x00007fff54dfcd10
 rsp = 0x00007fff54dfcce8
 r8 = 0x0000000000000000
 r9 = 0x0000000000000000
 r10 = 0x00007fff8d5a6342 libsystem_kernel.dylib`sigprocmask + 10
 r11 = 0x0000000000000206
 r12 = 0x0000000000000000
 r13 = 0x0000000000000000
 r14 = 0x0000000000000000
 r15 = 0x0000000000000000
 rip = 0x00007fff8d5a4d46 libsystem_kernel.dylib`__kill + 10
 rflags = 0x0000000000000206
 cs = 0x0000000000000007
 fs = 0x0000000000000000
 gs = 0x0000000000000000

Diagnose
Exploitability
based on register
control

LLDB python API
easily grabs
register state, etc

Thursday, November 29, 12

Tracking Local States
• Python API; use breakpoints to “pause”

• At these junctures we can grab local state
ensure we understand how the program is
being traversed (similar to dtrace
functionality).

while process.GetState() == lldb.eStateStopped:
 com_interpreter.HandleCommand(command, result)
 name = which_frame(result, str(target))
 if name:
 # add our name to the iterative results
 print "We're at %s" % name
 frames.append(name)
 else:
 # let's do a register dump and kill the process
 print "Stopped process, performing register dump"
 com_interpreter.HandleCommand("register read", result)
 fhandle.write("Execution Error:\n")
 fhandle.write("Register Information: \n%s\n" % result.GetOutput())
 process.Destroy()
 break

 process.Continue()

Thursday, November 29, 12

Coupling

• Fact based storage of both source
deductions and dynamic results are used.

• Next iteration uses lessons learned...

• Augment with additional checkers or even
notify developer of an incomplete analysis.

Thursday, November 29, 12

Python Driver
• Alpha version delivered in September...
analysis_step = ”””
Analysis Step ===
Using the static−analyzer to build the products via source as well
as assemble the analysis for inputs to dynamic instrumentation phase. ”””
print colored (analysis_step , ’yellow’)
run scan build ...
HtmlDir = scanbuild.Main([’clang++’,’-g’,’simple.cxx’,’-o’,’simple2’]) if HtmlDir == None :
print ”””
We didn’t produce a report, for now we flag this, but this means that ←􀀀􀀁􀀂􀀃􀀄􀀅􀀆􀀇􀀈􀀉􀀊􀀋􀀌􀀍􀀎􀀏􀀐􀀑􀀒􀀓􀀔􀀕􀀖􀀗􀀘􀀙􀀚􀀛􀀜􀀝􀀞􀀟􀀠􀀡􀀢􀀣􀀤􀀥􀀦􀀧􀀨􀀩􀀪􀀫􀀬􀀭􀀮􀀯􀀰􀀱􀀲􀀳􀀴􀀵􀀶􀀷􀀸􀀹􀀺􀀻􀀼􀀽􀀾􀀿􀁀􀁁􀁂􀁃􀁄􀁅􀁆􀁇􀁈􀁉􀁊􀁋􀁌􀁍􀁎􀁏􀁐􀁑􀁒􀁓􀁔􀁕􀁖􀁗􀁘􀁙􀁚􀁛􀁜􀁝􀁞􀁟􀁠􀁡􀁢􀁣􀁤􀁥􀁦􀁧􀁨􀁩􀁪􀁫􀁬􀁭􀁮􀁯􀁰􀁱􀁲􀁳􀁴􀁵􀁶􀁷􀁸􀁹􀁺􀁻􀁼􀁽􀁾􀁿
our
static analysis didn’t reveal anything. ”””
−−−−−−−−−−−−−
#Step two, assemble call function graph
cfg_step = ”””
Call Function Graph ===
Building the call function graph and a few other related inputs for downstream analysis and supporting functionality .
”””
print colored (cfg_step , ’yellow’)
generate callgraph and assemble
walkcallgraph . Main (’simple.cxx’)
−−−−−−−−−−−−−
#Step three , assemble for supporting Hypothesis , fact generation , plus ←􀀀􀀁􀀂􀀃􀀄􀀅􀀆􀀇􀀈􀀉􀀊􀀋􀀌􀀍􀀎􀀏􀀐􀀑􀀒􀀓􀀔􀀕􀀖􀀗􀀘􀀙􀀚􀀛􀀜􀀝􀀞􀀟􀀠􀀡􀀢􀀣􀀤􀀥􀀦􀀧􀀨􀀩􀀪􀀫􀀬􀀭􀀮􀀯􀀰􀀱􀀲􀀳􀀴􀀵􀀶􀀷􀀸􀀹􀀺􀀻􀀼􀀽􀀾􀀿􀁀􀁁􀁂􀁃􀁄􀁅􀁆􀁇􀁈􀁉􀁊􀁋􀁌􀁍􀁎􀁏􀁐􀁑􀁒􀁓􀁔􀁕􀁖􀁗􀁘􀁙􀁚􀁛􀁜􀁝􀁞􀁟􀁠􀁡􀁢􀁣􀁤􀁥􀁦􀁧􀁨􀁩􀁪􀁫􀁬􀁭􀁮􀁯􀁰􀁱􀁲􀁳􀁴􀁵􀁶􀁷􀁸􀁹􀁺􀁻􀁼􀁽􀁾􀁿 report
scanning from our analysis step hypothesis_step = ”””
Hypothesis Generation ===
Building various hypothesis , reframing meta data for more abstract representations and assembling supporting information for dynamic testing .
”””
print colored (hypothesis_step , ’yellow’) # compile the facts ...
engine = knowledge_engine.engine(’’) # reveal where our issues are
scanparser . Main (HtmlDir , ’simple.cxx’)
step four , run the fuzzer .. dynamic_step = ”””
Dynamic Instrumentation ===
Fuzzing the program using both predetermined pathways that analysis has come up along with more standard (i . e . conventional) fuzzing techniques .
”””
print colored (dynamic_step , ’yellow’) #Runthefuzzer
fuzzer1 . Driver (’simple2’)
−−−−−−−−−−−−−
Step five , summarize the results summarization_step = ”””
Summarization ===
Summarization of the analysis so far − in the Beta version of the software we allow the optional recycling of this information back to the static analysis step to allow bi−directional communication
”””
print colored (summarization_step , ’yellow’) # run the summarizer
summarization . Main (’dynamic-instrumentation/results.txt’)

ScanBuild

Mapping

Artificial
Intelligence

Fuzzing

Summarization

Thursday, November 29, 12

Other plugins

• Using other modules??

• This is another reason to use Python, as there
are numerous fuzzing and analysis libraries.

• Fairly straightforward for analysis. Replacing
the LLDB module can be done but not a trivial
operation.

Thursday, November 29, 12

Example of Incorporating
Other Modules: Sulley

• Sulley uses pydbg, which is necessarily
replaced by LLDB

• This is a substantial change within the files:
process_monitor.py
instrumentation.py
pedrpc.py

• But this is only 3 of 51 files! Meaning that this is
an essential but not onerous task

Thursday, November 29, 12

Important Ideas to
Carry Over

• Keep it modular

• We want a general architecture that is easily
customized...

• Fits well with Python modules

• Plug and play...

Thursday, November 29, 12

Envisioning a WorkFlow

Static
Analysis

Function
Graph

Data
Dependency

Hypothesis
Engine

Fuzzer

Scripting
(as it as been)

Now JSON,
Alternatively SQL

PYKE Facts
but will translate to

SQL

Now JSON,
Alternatively SQL

Facts, but
will extend to SQL

Thursday, November 29, 12

Other Ideas
• By keeping this in a scripting language, we

can create a distributed service without too
much pain

• LLVM Interpreter to simulate for additional
architectures

• Extend with additional black box techniques
or modules

Thursday, November 29, 12

Project Timeline
• We’ve released an alpha to DARPA, a beta

release is due towards the end of November.

• After the conclusion of this project we will
contribute this to the open source community.

• Look for this in early December or thereabouts...

• Feel free to contact:
jcarlson@gototheboard.com

Thursday, November 29, 12

mailto:jcarlson@gototheboard.com
mailto:jcarlson@gototheboard.com

Thank You

Thanks to....

Ayal Spitz, Alan Stone, Seth Landsman
and especially Peiter Zatko, DARPA, and
Bit Systems

And of course - Thanks to you for
listening...

Thursday, November 29, 12

Questions?

Thursday, November 29, 12

