
Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

What LLVM Can Do For You

David Chisnall

April 13, 2012

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Part 1: Introduction to LLVM

Author's Note
Comment
This talk will give a brief overview of how the various parts of LLVM can be useful to people who aren't necessarily compiler writers. It is split into four parts: an introduction to and overview of LLVM, a sample front end, an example optimisation pass, and brief look at the clang libraries

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Overview of a Compiler

Tokeniser

Parser

AST Builder

Optimiser

Code Generator

Source Code

Token Stream

Parser Actions

Intermediate Representation

Intermediate Representation

Executable Code

As with any other piece of
software using existing libraries
simplifies development.

Author's Note
Comment
Software is buggy. If you rewrite it, then you have twice as many opportunities to introduce bugs. Ideally, you want to reuse as much code generic code as possible, and only write new code for bits that are specific to your language.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Building a Front End

Tokeniser

Parser

Source Code

Token Stream

Parser Actions

Many existing tools:

• Lex + yacc

• Lemon

• ANTLR

• OMeta

• ...

Author's Note
Comment
Reusable tools for building parsers are effectively a solved problem. They've been around since the original UNIX systems and have evolved a lot since then. LLVM doesn't provide any of this stuff, because there are a lot of other tools to choose from that do.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

And the Middle?

• ASTs tend to be very language-specific

• You’re (mostly) on your own there

Author's Note
Comment
The AST tends to be very specific to the compiler. Some generic code would be possible here - for example something based on Peter Mosses' reusable structured operational semantics library - but there isn't much available yet.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

What About the Back End?

Optimiser

Code Generator

Intermediate Representation

Intermediate Representation

Executable Code

This is where LLVM comes in.

Author's Note
Comment
LLVM provides reusable components for the optimiser and code generator, including both JIT and ahead of time compilation.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

What is LLVM?

• A set of libraries for implementing compilers

• Intermediate representation (LLVM IR) for optimisation

• Various helper libraries

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Great for Compiler Writers!

• Other tools help you write the front end

• LLVM gives you the back end

• A simple compiler can be under 1000 lines of (new) code

Author's Note
Comment
It's very easy to create a simple interpreter for a new language, and that's as far as a lot of implementations get because going from interpreter to compiler has traditionally required a lot of knowledge about compilers and computer architecture. With LLVM, the barrier to entry is much lower. You can get something working, if not perfect, very quickly.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

What About Library Developers?

• LLVM optimisations are modular

• Does your library encourage some common patterns among
users?

• Write an optimisation that makes them faster!

All programmers use compilers. Now all programmers can improve
their compiler.

Author's Note
Comment
Lots of libraries encourage certain patterns and often end up with people hand-writing the same microoptimisation in every place where they use the code. With the modular infrastructure of LLVM, it's easy to write an optimisation for your library that you can ship for all users of the library.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

What Is LLVM IR?

• Unlimited Single-Assignment Register machine instruction set

• Three common representations:
• Human-readable LLVM assembly (.ll files)
• Dense ‘bitcode’ binary representation (.bc files)
• C++ classes

Author's Note
Comment
The bitcode format is only used for communicating between LLVM tools. You can generate either the assembly or construct the C++ objects directly. It's usually better to use the C++, but if you're writing a prototype in a scripting language that makes text manipulation easy then you may consider the assembly.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Unlimited Register Machine?

• Real CPUs have a fixed number of registers

• LLVM IR has an infinite number

• New registers are created to hold the result of every
instruction

• CodeGen’s register allocator determines the mapping from
LLVM registers to physical registers

Author's Note
Comment
LLVM is an abstract machine that is just high-level enough to be mapped to different architectures, but low-level enough that converting it into machine code is relatively simple for most architectures. In LLVM, the distinction between an instruction and a register is a bit fuzzy. The result of every instruction is stored in a new register and in the in-memory (C++) representation there is no distinction. The Instruction class is a subclass of the Value class, which incapsulates a register: you use the instruction object wherever you want the result of that instruction.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Static Single Assignment

• Registers may be assigned to only once

• Most (imperative) languages allow variables to be... variable

• This requires some effort to support in LLVM IR

Author's Note
Comment
SSA form makes a lot of optimisations easier, but it makes life a bit harder for front-end writers, because humans tend not to think in SSA form. For the purpose of the preceding statement, functional language uses do not count as human.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Multiple Assignment

�
int a = someFunction ();

a++; 	� �
• One variable, assigned to twice.

Author's Note
Comment
This is a trivial example of C, where a variable has two assignments. Most variables in C (and other Algol-family languages) see multiple assignments, so you need some effort when converting them to SSA form.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Translating to LLVM IR

�
%a = call i32 @someFunction ()

%a = add i32 %a, 1 	� �
error: multiple definition of local value named ’a’

%a = add i32 %a, 1

^

Author's Note
Comment
A direct translation of this to LLVM would fail: you can't assign to the same register twice and you get an error when you try.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Translating to Correct LLVM IR

�
%a = call i32 @someFunction ()

%a2 = add i32 %a, 1 	� �
• How do we track the new values?

Author's Note
Comment
This is what it looks like in SSA form in LLVM. Each assignment generates a new register. If you are emitting SSA form like this then you need to keep track of the different registers that represent a single variable has, so that you can reference the correct one. This is hard, so we usually cheat.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Translating to LLVM IR The Easy Way�
; int a

%a = alloca i32 , align 4

; a = someFunction

%0 = call i32 @someFunction ()

store i32 %0, i32* %a

; a++

%1 = load i32* %a

%2 = add i32 %0, 1

store i32 %2, i32* %a 	� �
• Numbered register are allocated automatically

• Each expression in the source is translated without worrying
about data flow

• Memory is not SSA in LLVM

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Isn’t That Slow?

• Lots of redundant memory operations

• Stores followed immediately by loads

• The mem2reg pass cleans it up for is�
%0 = call i32 @someFunction ()

%1 = add i32 %0, 1 	� �

Author's Note
Comment
Code in this form would be slow if we converted it to native code directly. Fortunately, there is a standard pass that constructs SSA form from memory to memory operations. After we run that, the rest of the optimisations are happy.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Sequences of Instructions

• A sequence of instructions that execute in order is a basic
block

• Basic blocks must end with a terminator

• Terminators are flow control instructions.

• call is not a terminator because execution resumes at the
same place after the call

Author's Note
Comment
Basic blocks have a single entry point and a single exit. There is one case where this is not quite true: an exception thrown from a called function will unwind the stack and so not return in this function. This doesn't break the model, because it means that there is no flow control within the function other than linear flow through basic blocks. If you want to be able to catch exceptions (or just run cleanup code) then you must use the invoke instruction instead of a call. The invoke instruction is a terminator, and has two possible successors, one for a normal return and one for a return as a result of an exception being thrown.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Intraprocedural Flow Control

• Assembly languages typically manage flow control via jumps /
branches

• LLVM IR has conditional and unconditional branches

• Branch instructions go at the end of a basic block

• Basic blocks are branch targets

• You can’t jump into the middle of a basic block

Author's Note
Comment
The intraprocedural flow control is quite simple. Most of the time, you will just use conditional and unconditional branches. These go at the end of one basic block and indicate which ones may follow it.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

What About Conditionals?

�
int b = 12;

if (a)

b++;

return b; 	� �
• Flow control requires one basic block for each path

• Conditional branches determine which path is taken

Author's Note
Comment
This case is more complex: now we have two paths, both ending at the same return statement, and with a different value in the variable for each one. This is trivial in the non-SSA memory, but how do we do that in SSA form?

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

‘Phi, my lord, phi!’ - Lady Macbeth, Compiler Developer

• PHI nodes are special instructions used in SSA construction

• Their value is determined by the preceding basic block

• PHI nodes must come before any non-PHI instructions in a
basic block

Author's Note
Comment
Phi nodes are the traditional solution to this in SSA, and are used by LLVM. They are registers that go at the start of a basic block and take a different value depending on the predecessor block.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

entry:

; int b = 12

%b = alloca i32

store i32 12, i32* %b

; if (a)

%0 = load i32* %a

%cond = icmp ne i32 %0, 0

br i1 %cond , label %then , label %end

then:

; b++

%1 = load i32* %b

%2 = add i32 %1, 1

store i32 %2, i32* %b

br label %end

end:

; return b

%3 = load i32* %b

ret i32 %3

Author's Note
Comment
Here we have the same example as before, now in LLVM IR. The if clause is a separate block and we jump to either it or directly to the return, depending on the result of the comparison.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

In SSA Form...

entry:

; if (a)

%cond = icmp ne i32 %a, 0

br i1 %cond , label %then , label %end

then:

; b++

%inc = add i32 12, 1

br label %end

end:

; return b

%b.0 = phi i32 [%inc , %then], [12, %entry]

ret i32 %b.0

The output from
the mem2reg pass

Author's Note
Comment
After making it SSA, we have the same structure, but a few changes. The first thing to note is the phi node at the bottom, taking the value of either %inc or 12, depending on the preceding basic block. Note that now the b variable doesn't exist as a register until the final block: it isn't allocated at the start, and its value depends on the flow control.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

And After Constant Propagation...

entry:

; if (a)

%cond = icmp ne i32 %a, 0

br i1 %cond , label %then , label %end

then:

br label %end

end:

; b++

; return b

%b.0 = phi i32 [13, %then], [12, %entry]

ret i32 %b.0

The output from the
constprop pass. No add
instruction.

Author's Note
Comment
Once we run constant propagation on this, it becomes even simpler. The 1+12 goes away and so now the phi node is just selecting between 12 or 13, depending on the path through the program. This is a bit silly, because now we have a basic block with no instructions in it, so we run the control flow graph simplification pass and see what it comes up with...

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

And After CFG Simplification...

entry:

%tobool = icmp ne i32 %a, 0

%0 = select i1 %tobool , i32 13, i32 12

ret i32 %0

• Output from the simplifycfg pass

• No flow control in the IR, just a select instruction

Author's Note
Comment
This is the same C program, but now with just two instructions: one comparison and then a select instruction that picks the value 12 or 13 depending on the result of the comparison.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Why Select?

x86:

testl %edi, %edi

setne %al

movzbl %al, %eax

orl $12, %eax

ret

ARM:

mov r1, r0

mov r0, #12

cmp r1, #0

movne r0, #13

mov pc, lr

PowerPC:

cmplwi 0, 3, 0

beq 0, .LBB0_2

li 3, 13

blr

.LBB0_2:

li 3, 12

blr

Branch is only needed on some architectures.

Author's Note
Comment
The select instruction can be compiled to native code without branches on x86 and ARM. The movne instructions sets the value of a register conditionally, depending on a condition code. The setne x86 instruction sets the value of the al to 1 or 0 depending on the condtion, then movzbl zero extends it into eax, and then we perform an or operation on the result. 12 | 1 gives 13, so this generates 12 or 13, depending on the value of the comparison, but has no branches. The PowerPC version, unfortunately, does require branching.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Functions

• LLVM functions contain at least one basic block

• Arguments are explicitly typed�
@hello = private constant [13 x i8] c"Hello

world !\00"

define i32 @main(i32 %argc , i8** %argv) {

entry:

%0 = getelementptr [13 x i8]* @hello , i32 0,

i32 0

call i32 @puts(i8* %0)

ret i32 0

} 	� �

Author's Note
Comment
This is hello world in LLVM IR. Note that LLVM is strongly typed, so you need to convert from the 13 8-bit-integer array pointer to an 8-bit integer pointer with the getelementpointer instruction, here used to get the pointer to the first element in the array. This is then passed to the puts() function.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Get Element Pointer?

• Often shortened to GEP (in code as well as documentation)

• Represents pointer arithmetic

• Translated to complex addressing modes for the CPU

• Also useful for alias analysis: result of a GEP is the same
object as the original pointer (or undefined)

Author's Note
Comment
GEPs do nothing on their own. Paired with either a load or store instruction, they represent (arbitrarily) complex addressing modes. These let you represent things that the back end will either compile to a sequence of adds and shifts or a complex addressing mode, depending on the target.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

F!@£ing GEPs! HOW DO THEY WORK?!?�
struct a {

int c;

int b[128];

} a;

int get(int i) { return a.b[i]; } 	� ��
%struct.a = type { i32 , [128 x i32] }

define i32 @get(i32 %i) {

entry:

%arrayidx = getelementptr %struct.a* @a, i32

0, i32 1, i32 %i

%0 = load i32* %arrayidx

ret i32 %0

} 	� �

Author's Note
Comment
This shows a simple function that returns a value from an element in an array in a structure. The GEP takes 3 values. The first is needed because this is a pointer (globals are always pointers), and so the 0 steps into the first element that this points to. If it were 1, it would be the address immediately after the end of the structure. The next value, 1, gives the address of struct field number 1: b. The third argument is the value passed in as an argument, and gives the index within the array. This doesn't load anything or dereference any pointers, it just computes the address of a.b[i]. The load instruction actually accesses the memory.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

As x86 Assembly�
define i32 @get(i32 %i) {

entry:

%arrayidx = getelementptr inbounds %struct.a*

@a , i32 0, i32 1, i32 %i

%0 = load i32* %arrayidx

ret i32 %0

} 	� �
get:

movl 4(%esp), %eax # load parameter

movl a+4(,%eax,4), %eax # GEP + load

ret

Author's Note
Comment
On x86, the GEP and load become a single instruction, with a complex addressing mode accessing address a + 4*eax+4.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

As ARM Assembly�
define i32 @get(i32 %i) {

entry:

%arrayidx = getelementptr inbounds %struct.a*

@a , i32 0, i32 1, i32 %i

%0 = load i32* %arrayidx

ret i32 %0

} 	� �
get:

ldr r1, .LCPI0_0 // Load global address

add r0, r1, r0, lsl #2 // GEP

ldr r0, [r0, #4] // load return value

bx lr

.LCPI0_0:

.long a

Author's Note
Comment
On ARM, the GEP is one instruction doing the address computation, and the load is a second one. For simpler GEPs on ARM, the load and GEP will be a single instruction.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Part 2: Writing a Simple Front
End

Author's Note
Comment
In the next part of this talk, we'll look at a more concrete example: a compiler for a toy language.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

What Applications Need Compilers?

• UNIX bc / dc

• Graphviz

• JavaScript

• AppleScript / Visual Basic for Applications

• Firewall filter rules

• EMACS Lisp

Author's Note
Comment
DSLs crop up in all sorts of places. EMACS and web browsers show us that any tool evolves until it contains a complete development environment, at which point it is replaced by a metaprogrammed version of itself. Quite often DSLs are just used for scripting other things, so initially performance is not considered when implementing them. After users start implementing complex things in them, performance becomes more important.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

How Do I Use LLVM?

• Generate LLVM IR from your language

• Link to some helper functions written in C and compiled to
LLVM IR with clang

• Run optimisers

• Emit code: object code files, assembly, or machine code in
memory (JIT)

Author's Note
Comment
If you have an existing interpreter, then the easiest thing to do is take the individual interpreter steps and compile them with clang to LLVM IR. Then your code generator just needs to generate calls to these functions. The LLVM optimisers will inline them and you end up with native code for your language with very little effort.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

A Typical LLVM-based Compiler Implementation

ASTParser Interpreter

LLVM Optimiser JIT

Clang

Runtime Support Code

LLVM Optimiser

LLVM Linker Native Linker

Executable

Author's Note
Comment
Starting with an interpreter, the first thing that you need to do is generate LLVM IR from your AST or bytecode. This can easily call C functions, so you can make a quick-and-dirty compiler very quickly. For better performance, you can make these functions available to the LLVM optimisers. One of the nicest features of LLVM is that you can also statically compile, just as easily as you can JIT compile. This means that if you have some scripts that everyone uses, you can compile them ahead of time and ship them linked into your binary.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

A Note About LLVM Types

• LLVM is strongly typed

• Types are structural (e.g. 8-bit integer - signed and unsigned
are properties of operations, not typed)

• Arrays of different length are different types

• Pointers and integers are different

• Structures with the same layout are different if they have
different names (new in LLVM 3.)

• Various casts to translate between them

Author's Note
Comment
LLVM requires explicit casts for transforming types. LLVM types are structural - there is no unsigned or signed integer type, operations are signed or unsigned but the types are not. Two anonymous structures with the same layout are considered the same type, but two named structures with different types are not (for type-base antialiasing).

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

A Worked Example

Full source code:
http://cs.swan.ac.uk/~csdavec/FOSDEM12/examples.tbz2

Compiler source file:
http://cs.swan.ac.uk/~csdavec/FOSDEM12/compiler.cc.html

Author's Note
Comment
The rest of this talk will cover a worked example, turning a toy interpreter into a toy compiler.

http://cs.swan.ac.uk/~csdavec/FOSDEM12/examples.tbz2
http://cs.swan.ac.uk/~csdavec/FOSDEM12/compiler.cc.html

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

A Simple DSL

• Simple language for implementing cellular automata

• Programs run on every cell in a grid

• Lots of compromises to make it easy to implement!

• 10 per-instance accumulator registers (a0-a9)

• 10 shared registers (g0-g9)

• Current cell value register (v)

Author's Note
Comment
This language makes a lot of compromises to make it easier to parse - this talk is about code generation, not about parsing, so the grammar is intentionally simple.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Arithmetic Statements

{operator} {register} {expression}

• Arithmetic operations are statements - no operator
precedence.

Author's Note
Comment
For simplicity in parsing, arithmetic statements start with their operator and are not expressions. Making them expressions would not make the code generator much more complex, but would make the grammar much more complex.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Neighbours Statements

neigbours ({statements})

• Only flow control construct in the language

• Executes the statements once for every neighbour of the
current cell

Author's Note
Comment
If this is run on a corner, it will execute 3 times. If it's run on an edge, it will execute 5 times. If it's run anywhere else, it will execute 8 times. The value of the neighbour cell is stored in a0.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Select Expressions

[{register} |

{value or range) => {expression},

{value or range) => {expression}...

]

• Maps a value in a register to another value selected from a
range

• Unlisted ranges are implicitly mapped to 0

Author's Note
Comment
This is the only conditional execution in the language. It maps a value in a register to another value, depending on the range of the current value. This is like a C switch statement, but is an expression not a statement (i.e. it evaluates to something).

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Examples

Flash every cell:

= v [v | 0 => 1]

Count the neighbours:

neighbours (+ a1 1)

= v a1

Connway’s Game of Life:

neighbours (+ a1 a0)

= v [v |

0 => [a1 | 3 => 1] ,

1 => [a1 | (2,3) => 1]

]

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

AST Representation

• Nodes with two children

• Registers and literals encoded into pointers with low bit set

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Implementing the Compiler

• One C++ file

• Uses several LLVM classes

• Some parts written in C and compiled to LLVM IR with clang

Author's Note
Comment
Once the interpreter was done and working, writing and testing the compiler was very quick. For a toy language like this, it's easy to write a compiler in an afternoon.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

The Most Important LLVM Classes

• Module - A compilation unit.

• Function - Can you guess?

• BasicBlock - a basic block

• GlobalVariable (I hope it’s obvious)

• IRBuilder - a helper for creating IR

• Type - superclass for all LLVM concrete types

• ConstantExpr - superclass for all constant expressions

• PassManagerBuilder - Constructs optimisation passes to run

• ExecutionEngine - The thing that drives the JIT

Author's Note
Comment
These are the classes that you will spend most of your time working with. LLVM is huge, but the subset that people writing front ends need to care about is pretty small.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

The Runtime Library

�
void automaton(int16_t *oldgrid , int16_t *

newgrid , int16_t width , int16_t

height) {

int16_t g[10] = {0};

int16_t i=0;

for (int16_t x=0 ; x<width ; x++) {

for (int16_t y=0 ; y<height ; y++,i++) {

newgrid[i] = cell(oldgrid , newgrid , width ,

height , x, y, oldgrid[i], g);

}

}

} 	� �
Generate LLVM bitcode that we can link into our language:

$ clang -c -emit-llvm runtime.c -o runtime.bc -O0

Author's Note
Comment
It's common to call into things written in C for interpreters, so for this language I thought I'd do it the other way around. The code that we generate will be called by this function (we will implement cell()) once for each cell in the grid. Because we compile this to LLVM IR, our code will be inlined into it.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Setup

�
// Load the runtime module

OwningPtr <MemoryBuffer > buffer;

MemoryBuffer :: getFile("runtime.bc", buffer);

Mod = ParseBitcodeFile(buffer.get(), C);

// Get the stub function

F = Mod ->getFunction("cell");

// Stop exporting it

F->setLinkage(GlobalValue :: PrivateLinkage);

// Set up the first basic block

BasicBlock *entry =

BasicBlock :: Create(C, "entry", F);

// Create the type used for registers

regTy = Type:: getInt16Ty(C);

// Get the IRBuilder ready to use

B.SetInsertPoint(entry); 	� �

Author's Note
Comment
This is the basic setup. This constructs an LLVM module (actually by loading a template from disk), and gets a function ready for modifying.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Creating Space for the Registers

�
for (int i=0 ; i<10 ; i++) {

a[i] = B.CreateAlloca(regTy);

}

B.CreateStore(args++, v);

Value *gArg = args;

for (int i=0 ; i<10 ; i++) {

B.CreateStore(ConstantInt ::get(regTy , 0), a[i

]);

g[i] = B.CreateConstGEP1_32(gArg , i);

} 	� �

Author's Note
Comment
You'll do something like this to allocate and initialise the locals in any language. Here we do it a fixed number of times, but for other language you'll do this once for each local symbol you have. Don't worry about dead stores - the optimser will fix this for us later.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Compiling Arithmetic Statements

�
Value *reg = B.CreateLoad(a[val]);

Value *result = B.CreateAdd(reg , expr);

B.CreateStore(result , a[val]); 	� �
• LLVM IR is SSA, but this isn’t

• Memory is not part of SSA

• The Mem2Reg pass will fix this for us

Author's Note
Comment
The simple arithmetic operations are trivial. Just load the value, do the operation and store the new value.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Flow Control

• More complex, requires new basic blocks and PHI nodes

• Range expressions use one block for each range

• Fall through to the next one

Author's Note
Comment
Flow control operations are harder. They require you to create basic blocks and work out the relationship between them.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Range Expressions

�
PHINode *phi = PHINode :: Create(regTy , count , "

result", cont);

...

// For each range:

Value *min = ConstantInt ::get(regTy , minVal);

Value *max = ConstantInt ::get(regTy , maxVal);

match = B.CreateAnd(B.CreateICmpSGE(reg , min),

B.CreateICmpSLE(reg , max));

BasicBlock *expr = BasicBlock :: Create(C, "

range_result", F);

BasicBlock *next = BasicBlock :: Create(C, "

range_next", F);

B.CreateCondBr(match , expr , next);

B.SetInsertPoint(expr); // (Generate the

expression after this)

phi ->addIncoming(val , B.GetInsertBlock ());

B.CreateBr(cont); 	� �

Author's Note
Comment
Each range in a range expression require a comparison to check if we're in the desired range, then two new basic blocks: one for the match case, one for the next check. In the match case, we evaluate the expression and then jump to the continue block. In the continue block, we have a PHI node that contains the result, with a different value depending on which block it came from.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Optimising the IR

�
PassManagerBuilder PMBuilder;

PMBuilder.OptLevel = optimiseLevel;

PMBuilder.Inliner =

createFunctionInliningPass (275);

FunctionPassManager *FPM =

new FunctionPassManager(Mod);

PMBuilder.populateFunctionPassManager (*FPM);

for (Module :: iterator I = Mod ->begin(),

E = Mod ->end() ; I != E ; ++I) {

if (!I->isDeclaration ()) FPM ->run(*I);

}

FPM ->doFinalization ();

PassManager *MP = new PassManager ();

PMBuilder.populateModulePassManager (*MP);

MP->run(*Mod); 	� �

Author's Note
Comment
Once you've generated the IR, you almost certainly want to optimise it. When debugging, you can omit this step. The PassManagerBuilder constructs a PassManager, which is responsible for running optimisations. This snippet constructs the default set.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Generating Code

�
std:: string error;

ExecutionEngine *EE = ExecutionEngine :: create(

Mod , false , &error);

if (!EE) {

fprintf(stderr , "Error: %s\n", error.c_str ());

exit(-1);

}

return (automaton)EE ->getPointerToFunction(Mod ->

getFunction("automaton")); 	� �
Now we have a function pointer, just like any other function

pointer!

Author's Note
Comment
Finally, you want to generate the code. This is all that's required to compile the module and get a function pointer that you can call. The ExecutionEngine now owns the Module, so you are not responsible for deleting it. The Module, in turn, owns all of the things that it contains.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Some Statistics

Component Lines of Code

Parser 400
Interpreter 200
Compiler 300

Running 200000 iterations of Connway’s Game of Life on a 50x50
grid:

Interpreter

Compiler
7x speedup even on a
very simple program

Author's Note
Comment
These statistics are from before I added a load of comments to the compiler - it's now far more heavily commented than a real compiler would be (because it's example code that you are supposed to read and understand). The compiler is about 7-8 times faster than the interpreter. The interpreter itself is reasonably fast, so this is fine for a first pass.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Improving Performance

• Can we improve the IR we generate?

• Can LLVM improve the IR for us?

• Can we improve the overall system?

Author's Note
Comment
Having a toy compiler is a good first step. Now we've done the 'make it work', how do we do the 'make it fast' bit?

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Improving the IR

• Optimsers work best when they have lots of information to
work with.

• Split the inner loop into fixed-size blocks?

• Generate special versions of the program for edges and
corners?

Author's Note
Comment
The more invariants you can put in the IR, the better. You can also add metadata that a custom optimisation could use.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Make Better Use of Optimisations

• This version uses the default set of LLVM passes

• Try changing the order or explicitly adding others

• Writing new LLVM parses is quite easy - maybe you can write
some specific to your language?

Author's Note
Comment
Rather than using the standard set of passes, take a look at the list of passes on the LLVM web site and see if any others would be more useful. Sometimes just tweaking the order of the standard passes can give a good speedup. The default set is fine for C, but may not be ideal for other languages.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Part 2: Writing a Simple
Optimisation

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Writing a New Pass

LLVM optimisations are self-contained classes:

• ModulePass subclasses modify a whole module

• FunctionPass subclasses modify a function

• LoopPass subclasses modify a function

• Lots of analysis passes create information your passes can use!

Author's Note
Comment
Another advantage of LLVM's modularity is that it is easy to add new passes. You can easily write passes that take advantage of some extra knowledge from the source language. These can take advantage of LLVM's ability to infer flow control for you, so you don't have to do that at the AST level.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Example Language-specific Passes

ARC Optimisations:

• Part of LLVM

• Elide reference counting operations in Objective-C code when
not required

• Makes heavy use of LLVM’s flow control analysis

GNUstep Objective-C runtime optimisations:

• Distributed with the runtime.

• Can be used by clang (Objective-C) or LanguageKit
(Smalltalk)

• Cache method lookups, turn dynamic into static behaviour if
safe

Author's Note
Comment
These are just a few that exist already. The ARC optimisers run after some of the other standard LLVM passes so clang doesn't need to know about flow control - it can insert reference count operations in a naive way and then the optimser will remove redundant ones.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Writing A Simple Pass

• Memoise an expensive library call

• Call maps a string to an integer (e.g. string intern function)

• Mapping can be expensive.

• Always returns the same result.

Author's Note
Comment
This example will look at a fairly common pattern: a function where a non-zero result means that it will always return the same result in future, and so can be cached in the caller, but a zero result indicates temporary failure. We will write an optimisation pass that does this caching automatically.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Declaring the Pass

�
class MemoiseExample : public ModulePass {

/// Module that we’re currently optimising

Module *M;

/// Static cache.

llvm::StringMap <GlobalVariable*> statics;

// Lookup - call plus its argument

typedef std::pair <CallInst*,std::string >

ExampleCall;

bool runOnFunction(Function &F);

public:

static char ID;

MemoiseExample () : ModulePass(ID) {}

virtual bool runOnModule(Module &Mod);

};

RegisterPass <MemoiseExample > X("example -pass",

"Memoise example pass"); 	� �

Author's Note
Comment
This is the interface for our class. The important bit is the runOnModule() function, called from the PassManager, and the RegisterPass instance that registers this pass with the system.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

The Entry Point

�
bool MemoiseExample :: runOnModule(Module &Mod) {

statics.empty();

M = &Mod;

bool modified = false;

for (auto &F : Mod) {

if (F.isDeclaration ()) { continue; }

modified |= runOnFunction(F);

}

return modified;

}; 	� �

Author's Note
Comment
When you start this pass running, it iterates over the functions and does the optimisation. If it's running on each function in turn, why is it a ModulePass and not a FunctionPass? Because it needs to modify the module to add a private variable for the cache.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Finding the Call

�
for (auto &i : F) {

for (auto &b : i) {

if (CallInst *c = dyn_cast <CallInst >(&b)) {

if (Function *func = c->getCalledFunction ()){

if (func ->getName () == "example") {

ExampleCall lookup;

GlobalVariable *arg =

dyn_cast <GlobalVariable >(

c->getOperand (0) ->stripPointerCasts ());

if (0 == arg) { continue; }

ConstantDataArray *init =

dyn_cast <ConstantDataArray >(

arg ->getInitializer ()); 	� �

Author's Note
Comment
First we iterate over each instruction in each basic block and see if it's a call. If it is, then we see if it's a call to this function. If it is, we check if the argument is a constant string. If it is, then we collect it for later. We can't do the transform while iterating, because the transform will invalidate the iterators.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Creating the Cache

• Once we’ve found all of the replacement points, we can insert
the caches.

• Don’t do this during the search - iteration doesn’t like the
collection being mutated...�

GlobalVariable *cache = statics[arg];

if (!cache) {

cache = new GlobalVariable (*M, retTy , false ,

GlobalVariable :: PrivateLinkage ,

Constant :: getNullValue(retTy),

"._cache");

statics[arg] = cache;

} 	� �

Author's Note
Comment
Next we create a new variable for each unique argument to the function. This will be used to cache the result between calls.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Restructuring the CFG

�
BasicBlock *beforeLookupBB=lookup ->getParent ();

BasicBlock *lookupBB =

SplitBlock(beforeLookupBB , lookup , this);

BasicBlock :: iterator iter = lookup;

iter ++;

BasicBlock *afterLookupBB =

SplitBlock(iter ->getParent (), iter , this);

removeTerminator(beforeLookupBB);

removeTerminator(lookupBB);

PHINode *phi = PHINode :: Create(retTy , 2, arg ,

afterLookupBB ->begin());

lookup ->replaceAllUsesWith(phi); 	� �

Author's Note
Comment
Finally, we restructure the CFG. We split the basic block at the call, so beforeLookupBB ends just before the call, lookupBB contains the call (and nothing else), and afterLookupBB is the part after. SplitBlock() adds an unconditional branch to join the blocks together, which we don't want. We also create the phi node now and replace all uses of the lookup with the phi. This happens now because we are going to introduce a new use of the lookup soon, and we don't want to replace that one with the phi.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Adding the Test

�
IRBuilder <> B(beforeLookupBB);

llvm:: Value *cachedClass =

B.CreateBitCast(B.CreateLoad(cache), retTy);

llvm:: Value *needsLookup =

B.CreateIsNull(cachedClass);

B.CreateCondBr(needsLookup , lookupBB ,

afterLookupBB);

B.SetInsertPoint(lookupBB);

B.CreateStore(lookup , cache);

B.CreateBr(afterLookupBB);

phi ->addIncoming(cachedClass , beforeLookupBB);

phi ->addIncoming(lookup , lookupBB); 	� �

Author's Note
Comment
Next we load the old cache value, and if it's NULL branch to the real lookup, otherwise we skip it and use the existing value.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

A Simple Test

�
int example(char *foo) {

printf("example (%s)\n", foo);

int i=0;

while (*foo)

i += *(foo++);

return i;

}

int main(void) {

int a = example("a contrived example");

a += example("a contrived example");

a += example("a contrived example");

a += example("a contrived example");

a += example("a contrived example");

return a;

} 	� �

Author's Note
Comment
Now we try running this pass with a simple example. This implementation of the example() function doesn't do anything sensible, it just creates a number from the string and logs the fact that it was called. We can use this to test that the pass is doing what we want.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Running the Test

$ clang example.c ; ./a.out ; echo $?

example(a contrived example)

example(a contrived example)

example(a contrived example)

example(a contrived example)

example(a contrived example)

199

$ clang ‘llvm-config --cxxflags --ldflags ‘ memo.cc \

-std=c++0x -fPIC -shared -o memo.so

$ clang example.c -c -emit-llvm

$ opt -load ./memo.so -example-pass example.o | llc > e.s

$ clang e.s ; ./a.out ; echo $?

example(a contrived example)

199

Author's Note
Comment
Now, running it with the optimisation calculates the same result, but only calls the function once.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Part 4: Using Libclang

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

FFI Aided by Clang

• libclang allows you to easily parse headers.

• Can get names, type encodings for functions.

• No explicit FFI

• Pragmatic Smalltalk uses this to provide a C alien: messages
sent to C are turned into function calls

Author's Note
Comment
Clang, like LLVM is very modular and you can use it for FFI. I do this in LanguageKit, using clang to parse headers and get the type information for C functions. This allows dynamic language code to call C by just generating an LLVM call instruction and making sure that the arguments have the correct types.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

LanguageKit’s C Alien

Smalltalk code:�
C sqrt: 42.

C fdim: {60. 12}.

C NSLocation: l InRange: r. 	� �
Calls these C functions:�
double sqrt(double x);

double fdim(double x, double y);

BOOL NSLocationInRange(NSUInteger loc , NSRange

range); 	� �
Correct argument types are generated and return types interpreted
automatically.

Author's Note
Comment
The compiler generates calls to the matching C functions, looking up the types from the header using libclang. The programmer doesn't need to do anything other than tell the compiler which header to look at.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Using libclang

�
CXIndex idx = clang_createIndex (1, 1);

CXTranslationUnit tu =

clang_createTranslationUnitFromSourceFile(idx ,

filename , argc , argv , unsavedFileCount ,

unsavedFiles); 	� �
• Clang uses a single shared index for cross-referencing between

source files.

• A translation unit is a source file, plus includes, interpreted as
if compiled with the set of command line options.

• Unsaved (in-memory) files can be passed via the last two
arguments.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Using libclang

�
clang_visitChildrenWithBlock(

clang_getTranslationUnitCursor(tu),

^enum CXChildVisitResult (CXCursor c, CXCursor

parent) {

if (c.kind == CXCursor_FunctionDecl) {

CXString n= clang_getCursorSpelling(c);

const char *name= clang_getCString(n);

CXString t= clang_getDeclObjCTypeEncoding(c)

const char *type= clang_getCString(t);

storeFunctionNameAndType(name , type);

clang_disposeString(n);

clang_disposeString(t);

}

return CXChildVisit_Continue

}); 	� �

Author's Note
Comment
This visitor walks every top-level declaration in a compilation unit. If it is a function declaration, it gets the name and Objective-C type encoding. The latter is a shortcut that LanguageKit uses because it uses Objective-C type encodings internally so knows how to construct a call from one. For other compilers, walking the type declaration in clang is a better option.

Introduction Writing a New Front End Custom Optimisations Using the Clang Libraries

Questions?

	Introduction
	Instructions
	Basic Blocks
	Functions and Globals

	Writing a New Front End
	Why Write A Front End?
	Overview of LLVM for Front End Writers
	The Simple Automata Language
	LLVM API Overview

	Custom Optimisations
	Optimisations Overview
	Example Custom Passes
	Writing a A New Pass
	Using the Pass

	Using the Clang Libraries

