
1

Guaranteeing the

Correctness of MC for

ARM
Richard Barton

2

The MC Layer

 The Machine Code layer is a single location for Target

specific information for representing machine instructions.

 Multi-platform

 Multi-directional

 Table-generated

JIT code

Assembly (.s)

Object File (.o)

Front EndCode (.c) Optimiser Code
Generator

MC

3

Definition of the problem

 The MC layer is a cornerstone of LLVM.

 It is used by compilers, assemblers, debuggers and JIT

compilers.

 We need this component to be trustworthy in order for great

tools to be built with it.

 How can we guarantee the correctness that we need?

4

What is the functionality of MC?

 Decode:

 interpret instruction bit patterns

 Encode

 output instruction bit patterns

 Assemble

 Interpret instruction assembly

 Disassemble

 output instruction assembly

 We will not be testing the interface

between LLVM and MC.

decode
LLVM

MCInst

encode

assemble

disassemble

Bit pattern

0xE2910001

Assembly

ADDS r0, r1, #1

5

Our Strategy for solution

 Exhaustive checking of the problem space against a known

correct implementation with the same functionality.

 We think that our strategy is architecture agnostic.

6

Our Strategy for solution

 Exhaustive checking of the problem space against a known

correct implementation with the same functionality.

 We think that our strategy is architecture agnostic.

 What do we mean by exhaustive?

7

Our Strategy for solution

 Exhaustive checking of the problem space against a known

correct implementation with the same functionality.

 We think that our strategy is architecture agnostic.

 What do we mean by exhaustive?

 What do we mean by the whole problem space?

8

What is the problem space?

 Problem space has 4 dimensions

 Instruction encoding

 e.g. 0 – 2^32 for ARM

 Instruction set

 e.g. ARM vs. Thumb, x86_32 vs. x86_64, ...

 Architecture variant

 e.g. ARMv6 vs. ARMv7, MIPS IV vs. MIPS V, ...

 MC Functionality

 4 possible values {encode, decode, disassemble, assemble}

9

What is the problem space for ARM?

 Test space has 4 dimensions

 Instruction encoding

 2^32 possible values

 Instruction set

 2 possible values: ARM, Thumb

 Architecture variant

 28 pre-ARMv7 architecture + extensions combinations

 176 ARMv7 architecture + extensions combinations

 204 possible values

 MC Functionality

 4 possible values {encode, decode, disassemble, assemble}

 The whole test space has O(7 trillion) points

 7,009,386,627,072 points

10

Testing decode and disassemble

 The below diagram illustrates one chain of transformations

that test two MC functions.

 The ‘golden’ components are considered bug free.

LLVM
MCInst

UAL
assembly

LLVM MC
disassemble

Reference Impl.
assemble and
encode

LLVM MC
decode

Bit pattern 1 Bit pattern 2==
?

11

Testing encode

 Now that we have found and fixed all the bugs in MC’s

decoder, it becomes ‘golden’

 We can use it to test encoding.

LLVM
MCInst

LLVM MC
decode

LLVM MC
encode

Bit pattern 1 Bit pattern 2==
?

12

Testing assemble

 Testing assembling is similar to testing disassembling.

 We iterate over the instruction encodings in each case as

they are easier to enumerate than UAL strings.

LLVM
MCInst

UAL
assembly

LLVM MC
assemble

LLVM MC
decode and
disassemble

LLVM MC
encode

Bit pattern 1 Bit pattern 2==
?

13

Implementation Details

 A test suite needs a name.

 We have named this test suite the MC Hammer Tests

14

Icodec: our reference implementation

 A set of libraries that provide an abstraction of instruction

encodings. It can be regarded as an implementation of the

Unified Assembler Language providing a unified view of

several similar instruction sets.

 Handles encode, decode, assembling and disassembling.

 Used in the ARM Compiler toolchain.

 A golden reference implementation – no known bugs!

 Is ARM proprietary IP.

15

What is the test space for ARM?

 Test space has 4 dimensions

 Instruction encoding

 2^32 possible values

 Instruction set

 2 possible values: ARM, Thumb

 Architecture variant

 204 possible values

 MC Functionality

 4 possible values {encode, decode, disassemble, assemble}

 The whole test space has O(7 trillion) points

 7,009,386,627,072 points

 Even at 100,000 tests/s this would take 3.3 years to cover

16

Can we make this smaller?

 Some cores do not support certain instruction sets

 e.g. ARMv6M is Thumb only (Cortex-M0)

 Some architecture and extensions combinations are not

permitted.

 e.g. ARMv7 with VFPv2

 ARMv7 architecture extensions are often orthogonal

 e.g. VFP/NEON and security extensions

 For a plain Cortex-A8 core there are O(34 billion) points

 34,359,738,368 points

17

Slicing the Test Space

 The Test Suite will run on a slice of the test space.

 A slice is a 4-tuple describing a subset of the possible values

of each dimension.

 For example:

 0x0 – 0x0000FFFF x ARMv5TE x Thumb x assemble

 0x0 – 0xFFFFFFFF x ARMv7-A + VFPv3 + Adv. SIMDv1 + Half Precision

Extension + Security Extensions x ARM x encode_decode

 0bXXXX_0000_0001_XXXX_0000_XXXX_1001_XXXX x ARMv7-A x ARM x

disassemble

18

Implementation Details

 How can we ensure that undefined instructions are correctly

transformed?

LLVM
MCInst

UAL
assembly

LLVM MC
disassemble

Reference Impl.
assemble and
encode

LLVM MC
decode

Bit pattern 1 Bit pattern 2==
?

19

 How can we ensure that undefined instructions are correctly

transformed?

LLVM
MCInst

LLVM MC
disassemble

Reference Impl.
assemble and
encode

LLVM MC
decode

Bit pattern 1 Bit pattern 2==
?

Undefined
instruction

Implementation Details

20

 How can we ensure that undefined instructions are correctly

transformed?

Implementation Details

Undefined
instruction

LLVM
MCInst

LLVM MC
disassemble

LLVM MC
decode

Bit pattern 1

Reference Impl.
decode and
disassemble

21

Implementation Details

 How can we ensure that undefined instructions are correctly

transformed?

 For this you will need at least some decoder implementation

as well as an assembler.

 We solve this problem by comparing Icodec’s internal representation

instead of bit patterns.

 We know that MC cannot create an instruction from a bit pattern that

should be an undefined instruction.

22

Example Bug: VCVT

 VCVT (between floating-point and fixed point)

 VCVTEQ.F32.S16 s0,s0,#16

 Symptom is a SIGABRT with a bit pattern.

Running slice:
core_v7A+vfpneon_vfpv3_neonv1
feature_ARM
0x0 - 0x3fffffff
encode_decode

*** Killed by signal 6 *** (bitpattern eba0a40)

23

Example Bug: VCVT (2)

 Investigation showed that the Vd operand was not being

mapped into the instruction encoding in tablegen, causing the

MCInst to have two too few operands, and the encoder to try

to read a non-existent operand.

24

Example Bug: VCVT (3)

 Needed to add a split in the class hierarchy for single- and

double-precision versions as they encoded Vd differently

// Single Precision register

class AVConv1XInsS_Encode<bits<5> op1, bits<2> op2, bits<4> op3, bits<4> op4,

bit op5, dag oops, dag iops, InstrItinClass itin,

string opc, string asm, list<dag> pattern>

: AVConv1XI<op1, op2, op3, op4, op5, oops, iops, itin, opc, asm, pattern> {

bits<5> dst;

// if dp_operation then UInt(D:Vd) else UInt(Vd:D);

let Inst{22} = dst{0};

let Inst{15-12} = dst{4-1};

}

def VTOSHS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1110, 0b1010, 0,

(outs SPR:$dst), (ins SPR:$a, fbits16:$fbits),

IIC_fpCVTSI, "vcvt", ".s16.f32\t$dst, $a, $fbits", []> {

// Some single precision VFP instructions may be executed on both NEON and

// VFP pipelines on A8.

let D = VFPNeonA8Domain;

}

25

Example Bug: VCVT (4)

 Created patch and added test cases.

 Re-run slice through MC Hammer to check that it is

completely correct

slice=[0b111011101x111x1xxxxx101xx1x0xxxx][core_v7a+vfpneon_vfpv3_neonv1]
[feature_ARM][encode_decode]

26

Common errors

 Regression tests with 0-registers.

 Internal inconsistency within MC between uncommonly tested

code paths. Probably assemble+encode and

decode+disassemble are quite well tested but other

combinations like encode/decode are not.

 Patch for llvm-mc imminent

 MC does not have a good model of unpredictable ARM

instructions.

 Added a third failure mode for these instructions.

 e.g. MUL pc, r0, r1 is

27

How Trustworthy is MC?

 Initial indication is that ~10% of all ARM instructions for a

Cortex-A8 slice are encoded incorrectly by MC.

 18% of ARM instructions incorrect assembled

 Test suite performance (1 thread)

 For encode decode MC Hammer can run 7 Million tests/s. So one

Cortex-A8 slice takes ~ 1 hour.

 The assemble/disassemble tests take a few hours

 Progress

 ~ 2 man months of effort so far

 14 patches submitted upstream, 8 accepted.

 ~ 0.5% decrease in encoding bugs so far

28

How does this help the community?

 We think our approach is the first structured approach to

improving the correctness of code generation for ARM in the

MC layer.

 There is an ongoing effort to make the MC Layer more

reliable.

 The methodology can easily be applied to other tool chains

and other architectures.

 Requires a reference implementation, normally an assembler.

 Requires a unified assembly syntax

29

The End

 Thank you for listening.

