
 Vassil VassilevVassil Vassilev

Implementing Dynamic Scopes Implementing Dynamic Scopes
in Clingin Cling

Domain of High Energy Physics

Use of large scale frameworks and simulators
 Mainly written in C++

 Used by writing C++

 Many non CS users/developers

● Background ● Implementation ● Demo

The ROOT Framework

 Toolkit for large scale (PB) data analysis

 About ~20K users
 Used wherever large data is: HEP, military,

banking, astronomy ...

 Huge (~1M LOC)

 Interactive command interface is proven to help
not only the newbies but the experts

Efficient data management and analysis

● Background ● Implementation ● Demo

The ROOT Files

 Serialized C++ objects containing data
registered by the experiments

 List of contents (keys): object name, type

 Object data (values)

Common storage model used by the experiments

● Background ● Implementation ● Demo

What is Cling

 C++, C interactive compiler
 like CsharpRepl (http://www.mono-project.com/CsharpRepl)

 called ”interpreter” for legacy reasons

 Interactive prompt
 Terminal-like

 Allows entering declarations, statements and
expressions

 Successor of CINT

● Background ● Implementation ● Demo

Standalone tool for interfacing ROOT

Cling Implementation

Built on top of clang and LLVM plus:

 incremental compilation and always
incomplete TU

error recovery

usability extensions (such as value printing)

● Background ● Implementation ● Demo

Cling could be used as library

Dynamic Scopes in Cling

Synopsis

{
 TFile F;
 if (is_day_of_month_even())
 F.setName("even.root");
 else
 F.setName("odd.root");
 F.Open();
 hist->Draw();
}
hist->Draw();

 Defined in the
root file

● Background ● Implementation ● Demo

 The root file is gone.
Issue an error.

Extended lookup at runtime

Step by Step Plan

{
 TFile F;
 if (is_day_of_month_even())
 F.setName("even.root");
 else
 F.setName("odd.root");
 F.Open();
 hist->Draw();
}
hist->Draw();

! Failed lookup:
 1. Mark the node as
dependent. Thus we skip all
type checks and continue
building the AST

● Background ● Implementation ● Demo

During AST construction

Step by Step Plan

{
 TFile F;
 if (is_day_of_month_even())
 F.setName("even.root");
 else
 F.setName("odd.root");
 F.Open();
 hist->Draw();
}
hist->Draw();

An ASTConsumer takes care
of every dependent node left
over and transforms them into
valid C++ code

● Background ● Implementation ● Demo

After AST construction

Step by Step Plan

{
 TFile F;
 if (is_day_of_month_even())
 F.setName("even.root");
 else
 F.setName("odd.root");
 F.Open();
 EvaluateT<void>("hist->Draw()", ...);
}
hist->Draw();

● Background ● Implementation ● Demo

After AST construction

Additional information in case
of arguments

Calls cling interface which
compiles and runs the dynamic
expression

Step by Step Plan

{
 TFile F;
 if (is_day_of_month_even())
 F.setName("even.root");
 else
 F.setName("odd.root");
 F.Open();
 EvaluateT<void>("hist->Draw()", ...);
}
hist->Draw();

● Background ● Implementation ● Demo

At runtime

 gCling->Evaluate("hist->Draw()", ...);

A Real World Example

{
 TFile F;
 F.setName("hist.root");
 F.Open()
 int a[5] = {1, 2, 3, 4, 5};
 int size = 5;
 if (!hist->Draw(a, size))
 return false;
...
}
...

● Background ● Implementation ● Demo

Functions calls are the most common dynamic expressions in ROOT

AST Transformations

Stmt

Expr

hist->Draw(...)

Expr

...

Marked as dependent
node. All semantic
checks are omitted

Marking every unknown symbol as
dependent node is done by
overriding the bool LookupUnqualified
method in clang's ExternalSemaSource

Force Sema to think that it has seen a template definition

● Background ● Implementation ● Demo

AST Transformations

Stmt

Expr

hist->Draw(a, size)

Expr

...
We need to gather the
information about the

arguments

T EvaluateT()

All the information for the subtree's use of
other parts of the AST is embedded in the
dynamic call site EvaluateT

Pickup all the artificial nodes “seen as” template definitions

● Background ● Implementation ● Demo

hist->Draw(a, size) turns into
bool EvaluateT(“hist->Draw((int(*))@, *(int*)@)", (void *[2]){ &a, &size })

Collecting the Relevant Context

In case of more complex expressions (as in
previous example) we need to:
 Analyze the subtree that contains the dynamic

expression

 Build an extra array of runtime addresses of the
used arguments

 “Predict” the expected type of the dynamic
expression at compile time

● Background ● Implementation ● Demo

EvaluateT dissected

Collecting the Relevant Context

bool EvaluateT(“hist->Draw((int(*))@, *(int*)@)", (void *[2]){ &a, &size })

Type information

Placeholders, which
are replaced by the

addresses in the array
at runtime

Array of runtime
addresses of the
relevant context

Instantiated with the
expected return

type

...
 if (!EvaluateT<bool>("hist->Draw((int(*))@, *(int*)@)",
 (void *[2]){ &a, &size }))
...

● Background ● Implementation ● Demo

EvaluateT dissected

Array of Runtime Addresses

 Needed for the runtime compilation of the
dynamic expression

 Artificially generated

 Requires arguments types

void*[N]{&arg1, &arg2, ..., &argN}

● Background ● Implementation ● Demo

Expected Return Type

We assume that the entire
statement (with return type void)
is dynamic unless we've seen
an “anchor”, which gives a clue
about the expected type.

if (!hist->Draw(a, size))

The dynamic expression was
seen in if-clause so we can
deduce that the return type of
the call site would be bool

● Background ● Implementation ● Demo

Anchor could be:
 Assignment BinOp:
int i = hist->Draw(a, size);

 Explicit cast:
(int) hist->Draw(a, size)

 Implicit cast:
if (hist->Draw(a, size))

Cling's Dynamic Call Site

 EvaluateT
 Prepare the expression to be fed into cling

 Returns the expected (T) result

 Evaluate – interface in cling, which:
 Wraps given dynamic expression

 Runs the wrapper

 Returns the result of the execution

● Background ● Implementation ● Demo

Cling's Compiler as Service

Cling provides itself in its environment (gCling)
 Useful for providing an incremental compiler

(gCling->processLine(“#include <math>”))

 Used by the dynamic expressions to get compiled
at runtime (gCling->Evaluate(“hist->Draw()”))

● Background ● Implementation ● Demo

Unification and Lang Interop

 Ability cling object to call into library (written in
other dynamic language) and dynamically
invoke functions on the object that gets back

 Ability dyn lang A to call dyn lang B functions

 Ability to integrate it in other static languages

● Background ● Implementation ● Demo

The approach and implementation could be
extracted into separate library, as is done for
example by DLR (http://dlr.codeplex.com/)

Possible outcome could be:

http://dlr.codeplex.com/

Demo

1. Load dummy symbol provider (extends the
lookup at runtime)

2. Turn on the dynamic expression support

3. Turn on the debug AST printing

4. Type simple dynamic expression

● Background ● Implementation ● Demo

Thank you!Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

