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A LLVM Crash Bug

11/3/2010 2

…

int * p[2];

int i; 

for (...) {

p[i] = &i;

…

}

 LLVM crashed due to an over-aggressive assertion in 

Loop Invariant Code Motion in a 2.8 revision 

 For some reason it thought the address-taken 

variable “i” must not be part of expression on LHS
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Some LLVM Wrong Code Bugs
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 A 2.4 revision simplifies "(a > 13) & (a == 15)" into 

"(a > 13)“

 A 2.8 revision folds "((x == x) | (y & z)) == 1” into 0

- thought sub-expression (y & z) is constant integer

 A 2.8 revision reduces this loop into “i = 1”

for (i = 0; i < 5; i++)

{

if (i) continue;

if (i) break;

}
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From March, 2008 to present:

•170 bugs fixed + 3 reported but not yet fixed 
• 57 wrong code bugs
• 116 crash bugs

•Account for 2.6% of total valid bugs filed 
against LLVM in that period

Tally of Bugs



Goal

• Use random differential testing to find LLVM bugs!

 Aimed at deep optimization bugs

 Systematically 

 Find bugs, 

 Report bugs

 Automate the process as much as we can

 Ultimate goal: improve LLVM quality
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Random 
Generator 

clang -O0 clang -O3 gcc -O …

vote minoritymajority

C program

results
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1. What we do

2. What we learned

3. How we do it
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An Experiment

 Compiled and ran 1,000,000 random 

programs

 Using LLVM 1.9 – 2.8

 -O0, -O1, -O2, -Os, -O3

 x86 only
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Crash Error is the percentage of crashes triggered by 1,000,000 

random test cases 
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Distinct crash Errors is the number of distinct crashes triggered by 

1,000,000 random test cases 
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Wrong Code Error Rate is the percentage of wrong code errors 

found by 1,000,000 random test cases 
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Bug Distribution Across Stages
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frontend 10

middle-end 61

backend 67

Can’t identify 35

total  173

 Classification is based on bugzilla records and/or source 

files committed for bug fixes

 Source files under Clang or gcc are considered frontend

 Source files under Analysis and Transforms are considered 

middle-end

 Source files under CodeGen and Target are considered 

backend



Bug Distribution Across Files
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Cpp file Bugs found

InstructionCombining 13

SimpleRegisterCoalescing 10

DAGCombiner 6

LoopUnswitch 5

LoopStrengthReduce 4

JumpThreading 4

LICM 4

FastISel 4

llvm-convert 4

ExprConstant 4

X86InstrInfo 3

X86InstrInfo.td 3

X86ISelDAGToDAG 3

BranchFolding 3

… (and many more)



Increased Coverage by Random Programs  
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Line Function Branch

Clang + LLVM test 
suite

Clang + LLVM test 
suite + 10,000 
random programs
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1. What we do

2. What we learned

3. How we do it
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Beyond a Random Generator 
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• Ability to create random programs with unambiguous 

meanings 

 undefined behaviors

 unspecified behaviors

• Ability to check the meaning of a C program is 

preserved by the compiler 

 Summarize the “meaning” 

- the checksum of global variables

 Test harness: automatically detect checksum 

discrepancies



Not a Bug #1

int foo (int x) {

return (x+1) > x;

}

int main (void) {

printf ("%d\n", 

foo (INT_MAX));

return 0;

}

$ gcc -O1 foo.c -o foo

$ ./foo

0

$ clang -O2 foo.c -o foo

$ ./foo

1
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Not a Bug #2

int a;

void bar (int a, int b) {

}

int main (void) {

bar (a=1, a=2);

printf ("%d\n", a);

return 0;

}

$ gcc -O bar.c -o bar

$ ./bar

1

$ clang -O bar.c -o bar

$ ./bar

2
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Two Goals We Must Balance
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 Be expressive on code generation
- is easy if you don’t care about undefined  / 
unspecified behavior

 Avoid undefined behaviors and not depend 
on unspecified behaviors

- is easy if you don’t care about expressiveness

Expressive code that avoids undefined / 
unspecified behavior is hard



Design Compromises
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 Implementation-defined behavior is allowed
- Avoiding it is too restrictive

- We cannot do differential testing of x86 Clang vs. MSP430 

Clang

 No ground truth
- If all compilers generate the same wrong answer, we’ll never 

know

- Generating self-checking random code restricts expressiveness

 No attempt to generate terminating programs
- Test harness uses timeouts

- In practice ~10% of random programs don’t terminate within a 

few seconds



Supported features:

 Arithmetic, logical, and bit 
operations on integers

 Loops

 Conditionals

 Function calls

 Const and volatile

 Structs and Bitfields

 Pointers and arrays

 Goto

 Break, continue

Not supported:

 Side-effecting 
expressions

 Comma operator 

 Interesting type casts

 Strings

 Unions

 Floating point

 Nontrivial C++

 Nonlocal jumps

 Varargs

 Recursive functions

 Function pointers

 Dynamic memory alloc
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Avoid Undefined Behaviors With “Extra” 
Code
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 Use before initialization: declare all variables with 

explicit initializers

 Array OOB access: force all indices within bound using 

modulus

 Null pointer deference: check nullness before 

dereference
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Undefined Integer Behaviors

 Problem: These are undefined in C

 Divide by zero

 INT_MIN % -1

 Debatable in C99 standard but undefined in practice

 Shift by negative, shift past bitwidth

 Signed overflow

 Etc.
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Undefined Integer Behaviors

 Solution: Wrap all potentially undefined 

operations
int safe_signed_left_shift (int si1, int si2) {

if (si1 < 0 ||

si2 < 0 ||

si2 >= sizeof(int) ||

si1 > (INT_MAX >> si2)){

return si1;

} else {

return si1 << si2;

}

}



Avoid Undefined/Unspecified 
Behaviors Statically
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Some undefined / unspecified are too 

difficult to avoid structurally

 Dereference dangling pointers

 Order of evaluation problem:

-Two expressions writes to same variable



Generate 
Statement

Code Generator Augmented with 
Static Analyzer

Generate 
Expression

Generate Block

Generate 
Function

Start

End
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Pointer Analysis
Side Effect Analysis
Code Validation



Future work
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 For us:

 Create a turnkey system : 

 Test harness needs a partial rewrite (7000 lines of Perl)

 Improve test case reduction

 Support more C features

 Support more languages and formats (including IR) 

 For you:

 Please keep fixing bugs we report

 Tell us where random testing might be useful



Conclusion
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 Random testing is powerful

 Quickly found bugs in all compilers we tested

 Found deep optimization bugs unlikely to be 

uncovered by other means

 Can generate small test cases pinpoint the problem

 But has limitations:

 Never know when to stop testing

 Coverage is not broad enough

 Compilers need random testing

 Fixed test suite is not enough
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Thank you …

And thank Qualcomm for sponsoring my trip!

Questions?



Test Case Reduction
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 Is Necessary for

- Bug reporting

- Bug fixing

- Allow causal users find and report bugs using our 

tool

 Existing approach: Delta Debugging

- Repeatedly remove part of the program and see if 

it remains interesting

- Works well for crash bugs

-Works poorly for wrong code bugs

- Problem: Throwing away part of a program 

may introduce undefined behavior



Hierarchical Reduction
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Csmith
Runtime 

Verification 

and Feedback

Function Reduction

Block Reduction

Statement Reduction

Expression Reduction

Variable Reduction

 Initial results show reduced size of failure-inducing test 

cases by 93% on average in a few minutes


