
Hardening LLVM with

Random Testing

Xuejun Yang, Yang Chen

Eric Eide, John Regehr

{jxyang, chenyang, eeide, regehr}@cs.utah.edu

11/3/2010 1

School of Computing

University of Utah

11/3/2010

School of Computing

University of Utah 211/3/2010

School of Computing

University of Utah 2

A LLVM Crash Bug

11/3/2010 2

…

int * p[2];

int i;

for (...) {

p[i] = &i;

…

}

 LLVM crashed due to an over-aggressive assertion in

Loop Invariant Code Motion in a 2.8 revision

 For some reason it thought the address-taken

variable “i” must not be part of expression on LHS

11/3/2010

School of Computing

University of Utah 311/3/2010

School of Computing

University of Utah 3

Some LLVM Wrong Code Bugs

11/3/2010 3

 A 2.4 revision simplifies "(a > 13) & (a == 15)" into

"(a > 13)“

 A 2.8 revision folds "((x == x) | (y & z)) == 1” into 0

- thought sub-expression (y & z) is constant integer

 A 2.8 revision reduces this loop into “i = 1”

for (i = 0; i < 5; i++)

{

if (i) continue;

if (i) break;

}

11/3/2010

School of Computing

University of Utah 4

From March, 2008 to present:

•170 bugs fixed + 3 reported but not yet fixed
• 57 wrong code bugs
• 116 crash bugs

•Account for 2.6% of total valid bugs filed
against LLVM in that period

Tally of Bugs

Goal

• Use random differential testing to find LLVM bugs!

 Aimed at deep optimization bugs

 Systematically

 Find bugs,

 Report bugs

 Automate the process as much as we can

 Ultimate goal: improve LLVM quality

11/3/2010

School of Computing

University of Utah 5

Random
Generator

clang -O0 clang -O3 gcc -O …

vote minoritymajority

C program

results

School of Computing

University of Utah

1. What we do

2. What we learned

3. How we do it

7

School of Computing

University of Utah

An Experiment

 Compiled and ran 1,000,000 random

programs

 Using LLVM 1.9 – 2.8

 -O0, -O1, -O2, -Os, -O3

 x86 only

8

School of Computing

University of Utah

Crash Error is the percentage of crashes triggered by 1,000,000

random test cases

School of Computing

University of Utah

10

Distinct crash Errors is the number of distinct crashes triggered by

1,000,000 random test cases

School of Computing

University of Utah

11

Wrong Code Error Rate is the percentage of wrong code errors

found by 1,000,000 random test cases

School of Computing

University of Utah

11/3/2010

School of Computing

University of Utah 12

0 10 20 30 40

Dan Gohman

Chris Lattner

Evan Cheng

Eli Friedman

Devang Patel

Jakob S. Olesen

Anton Korobeynikov

Duncan Sands

Dale Johannesen

Nick Lewycky

Owen Anderson

Bill Wendling

Anders Carlsson

Jakub Staszak

Daniel Dunbar

Lang Hames

Bob Wilson

Who fixed
the bugs we
reported?

Bug Distribution Across Stages

11/3/2010 13

School of Computing

University of Utah

frontend 10

middle-end 61

backend 67

Can’t identify 35

total 173

 Classification is based on bugzilla records and/or source

files committed for bug fixes

 Source files under Clang or gcc are considered frontend

 Source files under Analysis and Transforms are considered

middle-end

 Source files under CodeGen and Target are considered

backend

Bug Distribution Across Files

11/3/2010 14

School of Computing

University of Utah

Cpp file Bugs found

InstructionCombining 13

SimpleRegisterCoalescing 10

DAGCombiner 6

LoopUnswitch 5

LoopStrengthReduce 4

JumpThreading 4

LICM 4

FastISel 4

llvm-convert 4

ExprConstant 4

X86InstrInfo 3

X86InstrInfo.td 3

X86ISelDAGToDAG 3

BranchFolding 3

… (and many more)

Increased Coverage by Random Programs

74.54% 72.90%

59.22%

74.69% 72.95%

59.48%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

Line Function Branch

Clang + LLVM test
suite

Clang + LLVM test
suite + 10,000
random programs

11/3/2010

School of Computing

University of Utah 15

1. What we do

2. What we learned

3. How we do it

16

School of Computing

University of Utah

Beyond a Random Generator

11/3/2010

School of Computing

University of Utah 17

• Ability to create random programs with unambiguous

meanings

 undefined behaviors

 unspecified behaviors

• Ability to check the meaning of a C program is

preserved by the compiler

 Summarize the “meaning”

- the checksum of global variables

 Test harness: automatically detect checksum

discrepancies

Not a Bug #1

int foo (int x) {

return (x+1) > x;

}

int main (void) {

printf ("%d\n",

foo (INT_MAX));

return 0;

}

$ gcc -O1 foo.c -o foo

$./foo

0

$ clang -O2 foo.c -o foo

$./foo

1

18

School of Computing

University of Utah

Not a Bug #2

int a;

void bar (int a, int b) {

}

int main (void) {

bar (a=1, a=2);

printf ("%d\n", a);

return 0;

}

$ gcc -O bar.c -o bar

$./bar

1

$ clang -O bar.c -o bar

$./bar

2

19

School of Computing

University of Utah

Two Goals We Must Balance

11/3/2010

School of Computing

University of Utah 20

 Be expressive on code generation
- is easy if you don’t care about undefined /
unspecified behavior

 Avoid undefined behaviors and not depend
on unspecified behaviors

- is easy if you don’t care about expressiveness

Expressive code that avoids undefined /
unspecified behavior is hard

Design Compromises

11/3/2010

School of Computing

University of Utah 21

 Implementation-defined behavior is allowed
- Avoiding it is too restrictive

- We cannot do differential testing of x86 Clang vs. MSP430

Clang

 No ground truth
- If all compilers generate the same wrong answer, we’ll never

know

- Generating self-checking random code restricts expressiveness

 No attempt to generate terminating programs
- Test harness uses timeouts

- In practice ~10% of random programs don’t terminate within a

few seconds

Supported features:

 Arithmetic, logical, and bit
operations on integers

 Loops

 Conditionals

 Function calls

 Const and volatile

 Structs and Bitfields

 Pointers and arrays

 Goto

 Break, continue

Not supported:

 Side-effecting
expressions

 Comma operator

 Interesting type casts

 Strings

 Unions

 Floating point

 Nontrivial C++

 Nonlocal jumps

 Varargs

 Recursive functions

 Function pointers

 Dynamic memory alloc

22

School of Computing

University of Utah

Avoid Undefined Behaviors With “Extra”
Code

11/3/2010

School of Computing

University of Utah 23

 Use before initialization: declare all variables with

explicit initializers

 Array OOB access: force all indices within bound using

modulus

 Null pointer deference: check nullness before

dereference

11/3/2010

School of Computing

University of Utah 24

Undefined Integer Behaviors

 Problem: These are undefined in C

 Divide by zero

 INT_MIN % -1

 Debatable in C99 standard but undefined in practice

 Shift by negative, shift past bitwidth

 Signed overflow

 Etc.

11/3/2010

School of Computing

University of Utah 25

Undefined Integer Behaviors

 Solution: Wrap all potentially undefined

operations
int safe_signed_left_shift (int si1, int si2) {

if (si1 < 0 ||

si2 < 0 ||

si2 >= sizeof(int) ||

si1 > (INT_MAX >> si2)){

return si1;

} else {

return si1 << si2;

}

}

Avoid Undefined/Unspecified
Behaviors Statically

11/3/2010

School of Computing

University of Utah 26

Some undefined / unspecified are too

difficult to avoid structurally

 Dereference dangling pointers

 Order of evaluation problem:

-Two expressions writes to same variable

Generate
Statement

Code Generator Augmented with
Static Analyzer

Generate
Expression

Generate Block

Generate
Function

Start

End

School of Computing

University of Utah

Pointer Analysis
Side Effect Analysis
Code Validation

Future work

11/3/2010

School of Computing

University of Utah 28

 For us:

 Create a turnkey system :

 Test harness needs a partial rewrite (7000 lines of Perl)

 Improve test case reduction

 Support more C features

 Support more languages and formats (including IR)

 For you:

 Please keep fixing bugs we report

 Tell us where random testing might be useful

Conclusion

11/3/2010

School of Computing

University of Utah 29

 Random testing is powerful

 Quickly found bugs in all compilers we tested

 Found deep optimization bugs unlikely to be

uncovered by other means

 Can generate small test cases pinpoint the problem

 But has limitations:

 Never know when to stop testing

 Coverage is not broad enough

 Compilers need random testing

 Fixed test suite is not enough

11/3/2010

School of Computing

University of Utah 30

Thank you …

And thank Qualcomm for sponsoring my trip!

Questions?

Test Case Reduction

11/3/2010 31

School of Computing

University of Utah

 Is Necessary for

- Bug reporting

- Bug fixing

- Allow causal users find and report bugs using our

tool

 Existing approach: Delta Debugging

- Repeatedly remove part of the program and see if

it remains interesting

- Works well for crash bugs

-Works poorly for wrong code bugs

- Problem: Throwing away part of a program

may introduce undefined behavior

Hierarchical Reduction

11/3/2010 32

School of Computing

University of Utah

Csmith
Runtime

Verification

and Feedback

Function Reduction

Block Reduction

Statement Reduction

Expression Reduction

Variable Reduction

 Initial results show reduced size of failure-inducing test

cases by 93% on average in a few minutes

